MBE Growth and Characterization of Strained HgTe (111) Films on CdTe/GaAs
-
Abstract
Strained HgTe thin films are typical three-dimensional topological insulator materials. Most works have focused on HgTe (100) films due to the topological properties resulting from uniaxial strain. In this study, strained HgTe (111) thin films are grown on GaAs (100) substrates with CdTe (111) buffer layers using molecular beam epitaxy (MBE). The optimal growth conditions for HgTe films are determined to be a growth temperature of 160C and an Hg/Te flux ratio of 200. The strains of HgTe films with different thicknesses are investigated by high-resolution x-ray diffraction, including reciprocal space mapping measurements. The critical thickness of HgTe (111) film on CdTe/GaAs is estimated to be approximately 284 nm by Matthews' equations, consistent with the experimental results. Reflection high-energy electron diffraction and high-resolution transmission electron microscopy investigations indicate that high-quality HgTe films are obtained. This exploration of the MBE growth of HgTe (111) films provides valuable information for further studies of HgTe-based topological insulators. -
-
References
[1] Lei W, Antoszewski J and Faraone L 2015 Appl. Phys. Rev. 2 041303 doi: 10.1063/1.4936577}[2] Liu M, Wang C and Zhou L Q 2019 Chin. Phys. B 28 037804 doi: 10.1088/1674-1056/28/3/037804}[3] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757 doi: 10.1126/science.1133734}[4] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766 doi: 10.1126/science.1148047}[5] Brüne C, Liu C X, Novik E G, Hankiewicz E M, Buhmann H, Chen Y L, Qi X L, Shen Z X, Zhang S C and Molenkamp L W 2011 Phys. Rev. Lett. 106 126803 doi: 10.1103/PhysRevLett.106.126803}[6] Brüne C, Roth A, Novik E G, König M, Buhmann H, Hankiewicz E M, Hanke W, Sinova J and Molenkamp L W 2010 Nat. Phys. 6 448 doi: 10.1038/nphys1655}[7] Nowack K C, Spanton E M, Baenninger M, König M, Kirtley J R, Kalisky B, Ames C, Leubner P, Brüne C, Buhmann H, Molenkamp L W, Goldhaber-Gordon D and Moler K A 2013 Nat. Mater. 12 787 doi: 10.1038/nmat3682}[8] Savchenko M L, Kozlov D A, Vasilev N N, Kvon Z D, Mikhailov N N, Dvoretsky S A and Kolesnikov A V 2019 Phys. Rev. B 99 195423 doi: 10.1103/PhysRevB.99.195423}[9] Ballingall J M, Leopold D J, Wroge M L, Peterman D J, Morris B J and Broerman J G 1986 Appl. Phys. Lett. 49 871 doi: 10.1063/1.97520}[10] Oehling S, Ehinger M, Spahn W, Waag A, Becker C R and Landwehr G 1996 J. Appl. Phys. 79 748 doi: 10.1063/1.362682}[11] Dvoretsky S, Mikhailov N, Sidorov Yu, Shvets V, Danilov S, Wittman B and Ganichev S 2010 J. Electron. Mater. 39 918 doi: 10.1007/s11664-010-1191-7}[12] Ballet P, Thomas C, Baudry X, Bouvier C, Crauste O, Meunier T, Badano G, Veillerot M, Barnes J P, Jouneau P H and Levy L P 2014 J. Electron. Mater. 43 2955 doi: 10.1007/s11664-014-3160-z}[13] Selviga E, Tonheim C R, Kongshaug K O, Skauli T, Lorentzen T and Haakenaasen R 2007 J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. Process. Meas. Phenom. 25 1776 doi: 10.1116/1.2787876}[14] Thomasa C, Baudrya X, Barnesa J P, Veillerota M, Jouneaub P H, Pougetb S, Craustec O, Meunierc T, Lévyc L P and Ballet P 2015 J. Cryst. Growth 425 195 doi: 10.1016/j.jcrysgro.2015.02.046}[15] Leubner P, Lunczer L, Brüne C, Buhmann H and Molenkamp L W 2016 Phys. Rev. Lett. 117 086403 doi: 10.1103/PhysRevLett.117.086403}[16] Feldman R D, Nakahara S, Opila R L, Austin R F and Boone T 1989 J. Cryst. Growth 98 581 doi: 10.1016/0022-02488990294-7}[17] Schaake H F and Koestner R J 1988 J. Cryst. Growth 86 452 doi: 10.1016/0022-02489090758-D}[18] Yang X Y, Wang G Y, Zhao C X, Zhu Z, Dong L, Li A M, Lv Y Y, Yao S H, Chen Y B, Guan D D, Li Y Y, Zheng H, Qian D, Liu C H, Chen Y L and Jia J F 2018 Chin. Phys. Lett. 35 026802 doi: 10.1088/0256-307X/35/2/026802}[19] Beugeling W, Kalesaki E, Delerue C, Niquet Y M, Vanmaekelbergh D and Smith C M 2015 Nat. Commun. 6 6316 doi: 10.1038/ncomms7316}[20] Liang F, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803 doi: 10.1103/PhysRevLett.98.106803}[21] Zaheer S, Young S M, Cellucci D, Teo J C Y, Kane C L, Mele E J and Rappe A M 2013 Phys. Rev. B 87 045202 doi: 10.1103/PhysRevB.87.045202}[22] Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J and Rappe A M 2012 Phys. Rev. Lett. 108 140405 doi: 10.1103/PhysRevLett.108.140405}[23] Dresselhaus G 1955 Phys. Rev. 100 580 doi: 10.1103/PhysRev.100.580}[24] Selvig E, Tonheim C R, Lorentzen T, Kongshaug K O, Skauli T and Haakenaasen R 2008 J. Electron. Mater. 37 1444 doi: 10.1007/s11664-008-0447-y}[25] Matthews J W and Blakeslee A E 1974 J. Cryst. Growth 27 118 doi: 10.1016/S0022-02487480055-2} -
Related Articles
[1] LI Li-Gong, LIU Shu-Man, LUO Shuai, YANG Tao, WANG Li-Jun, LIU Feng-Qi, YE Xiao-Ling, XU Bo, WANG Zhan-Guo. Metalorganic Chemical Vapor Deposition Growth of InAs/GaSb Superlattices on GaAs Substrates and Doping Studies of P-GaSb and N-InAs [J]. Chin. Phys. Lett., 2012, 29(7): 076801. doi: 10.1088/0256-307X/29/7/076801 [2] LI Li-Gong, LIU Shu-Man, LUO Shuai, YANG Tao, WANG Li-Jun, LIU Feng-Qi, YE Xiao-Ling, XU Bo, WANG Zhan-Guo. Effect of Interface Bond Type on the Structure of InAs/GaSb Superlattices Grown by Metalorganic Chemical Vapor Deposition [J]. Chin. Phys. Lett., 2011, 28(11): 116802. doi: 10.1088/0256-307X/28/11/116802 [3] WANG Guo-Wei, XU Ying-Qiang, GUO Jie, TANG Bao, REN Zheng-Wei, HE Zhen-Hong, NIU Zhi-Chuan. Growth and Characterization of GaSb-Based Type-II InAs/GaSb Superlattice Photodiodes for Mid-Infrared Detection [J]. Chin. Phys. Lett., 2010, 27(7): 077305. doi: 10.1088/0256-307X/27/7/077305 [4] LIU Hong-Gang, JIN Zhi, SU Yong-Bo, WANG Xian-Tai, CHANG Hu-Dong, ZHOU Lei, LIU Xin-Yu, WU De-Xin. Extrinsic Base Surface Passivation in High Speed “Type-II'” GaAsSb/InP DHBTs Using an InGaAsP Ledge Structure [J]. Chin. Phys. Lett., 2010, 27(5): 058502. doi: 10.1088/0256-307X/27/5/058502 [5] GUO Jie, SUN Wei-Guo, PENG Zhen-Yu, ZHOU Zhi-Qiang, XU Ying-Qiang, NIU Zhi-Chuan. Interfaces in InAs/GaSb Superlattices Grown by Molecular Beam Epitaxy [J]. Chin. Phys. Lett., 2009, 26(4): 047802. doi: 10.1088/0256-307X/26/4/047802 [6] TANG Bao, XU Ying-Qiang, ZHOU Zhi-Qiang, HAO Rui-Ting, WANG Guo-Wei, REN Zheng-Wei, NIU Zhi-Chuan. GaAs Based InAs/GaSb Superlattice Short Wavelength Infrared Detectors Grown by Molecular Beam Epitaxy [J]. Chin. Phys. Lett., 2009, 26(2): 028102. doi: 10.1088/0256-307X/26/2/028102 [7] ZHANG Jie, GUO Li-Wei, XING Zhi-Gang, GE Bing-Hui, DING Guo-Jian, PENG Ming-Zeng, JIA Hai-Qiang, ZHOU Jun-Ming, CHEN Hong. Growth of Highly Conductive n-Type Al0.7Ga0.3N Film by Using AlN Buffer with Periodical Variation of V / III Ratio [J]. Chin. Phys. Lett., 2008, 25(12): 4449-4452. [8] WANG Xian-Cheng, MA Hong-An, ZANG Chuan-Yi, TIAN Yu, LI Shang-Sheng, JIA Xiao-Peng. Growth of Large High-Quality Type-II a Diamond Crystals [J]. Chin. Phys. Lett., 2005, 22(7): 1800-1802. [9] XU Xiao-Hua, NIU Zhi-Chuan, NI Hai-Qiao, XU Ying-Qiang, ZHANG Wei, HE Zheng-Hong, HAN Qin, WU Rong-Han. Molecular Beam Epitaxy Growth and Photoluminescence of Type-II (GaAs1-xSbx/InyGa1-yAs)/GaAs Bilayer Quantum Well [J]. Chin. Phys. Lett., 2004, 21(9): 1831-1834. [10] LONG Fei, LIU Shenzhi, MEI Fei, MIAO Jingqi, LIANG Jingguo. Electronic Structure of Type-II InAs/GaSb Misaligned Superlattice [J]. Chin. Phys. Lett., 1994, 11(2): 109-112.