MBE Growth and Characterization of Strained HgTe (111) Films on CdTe/GaAs

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 11634009, 61874069, 1177041280 and 11574336), and Shanghai Science and Technology Foundation (Grant No.18JC1420401).
  • Received Date: December 05, 2019
  • Published Date: February 29, 2020
  • Strained HgTe thin films are typical three-dimensional topological insulator materials. Most works have focused on HgTe (100) films due to the topological properties resulting from uniaxial strain. In this study, strained HgTe (111) thin films are grown on GaAs (100) substrates with CdTe (111) buffer layers using molecular beam epitaxy (MBE). The optimal growth conditions for HgTe films are determined to be a growth temperature of 160C and an Hg/Te flux ratio of 200. The strains of HgTe films with different thicknesses are investigated by high-resolution x-ray diffraction, including reciprocal space mapping measurements. The critical thickness of HgTe (111) film on CdTe/GaAs is estimated to be approximately 284 nm by Matthews' equations, consistent with the experimental results. Reflection high-energy electron diffraction and high-resolution transmission electron microscopy investigations indicate that high-quality HgTe films are obtained. This exploration of the MBE growth of HgTe (111) films provides valuable information for further studies of HgTe-based topological insulators.
  • Article Text

  • [1]
    Lei W, Antoszewski J and Faraone L 2015 Appl. Phys. Rev. 2 041303 doi: 10.1063/1.4936577}

    CrossRef Google Scholar

    [2]
    Liu M, Wang C and Zhou L Q 2019 Chin. Phys. B 28 037804 doi: 10.1088/1674-1056/28/3/037804}

    CrossRef Google Scholar

    [3]
    Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757 doi: 10.1126/science.1133734}

    CrossRef Google Scholar

    [4]
    König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766 doi: 10.1126/science.1148047}

    CrossRef Google Scholar

    [5]
    Brüne C, Liu C X, Novik E G, Hankiewicz E M, Buhmann H, Chen Y L, Qi X L, Shen Z X, Zhang S C and Molenkamp L W 2011 Phys. Rev. Lett. 106 126803 doi: 10.1103/PhysRevLett.106.126803}

    CrossRef Google Scholar

    [6]
    Brüne C, Roth A, Novik E G, König M, Buhmann H, Hankiewicz E M, Hanke W, Sinova J and Molenkamp L W 2010 Nat. Phys. 6 448 doi: 10.1038/nphys1655}

    CrossRef Google Scholar

    [7]
    Nowack K C, Spanton E M, Baenninger M, König M, Kirtley J R, Kalisky B, Ames C, Leubner P, Brüne C, Buhmann H, Molenkamp L W, Goldhaber-Gordon D and Moler K A 2013 Nat. Mater. 12 787 doi: 10.1038/nmat3682}

    CrossRef Google Scholar

    [8]
    Savchenko M L, Kozlov D A, Vasilev N N, Kvon Z D, Mikhailov N N, Dvoretsky S A and Kolesnikov A V 2019 Phys. Rev. B 99 195423 doi: 10.1103/PhysRevB.99.195423}

    CrossRef Google Scholar

    [9]
    Ballingall J M, Leopold D J, Wroge M L, Peterman D J, Morris B J and Broerman J G 1986 Appl. Phys. Lett. 49 871 doi: 10.1063/1.97520}

    CrossRef Google Scholar

    [10]
    Oehling S, Ehinger M, Spahn W, Waag A, Becker C R and Landwehr G 1996 J. Appl. Phys. 79 748 doi: 10.1063/1.362682}

    CrossRef Google Scholar

    [11]
    Dvoretsky S, Mikhailov N, Sidorov Yu, Shvets V, Danilov S, Wittman B and Ganichev S 2010 J. Electron. Mater. 39 918 doi: 10.1007/s11664-010-1191-7}

    CrossRef Google Scholar

    [12]
    Ballet P, Thomas C, Baudry X, Bouvier C, Crauste O, Meunier T, Badano G, Veillerot M, Barnes J P, Jouneau P H and Levy L P 2014 J. Electron. Mater. 43 2955 doi: 10.1007/s11664-014-3160-z}

    CrossRef Google Scholar

    [13]
    Selviga E, Tonheim C R, Kongshaug K O, Skauli T, Lorentzen T and Haakenaasen R 2007 J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. Process. Meas. Phenom. 25 1776 doi: 10.1116/1.2787876}

    CrossRef Google Scholar

    [14]
    Thomasa C, Baudrya X, Barnesa J P, Veillerota M, Jouneaub P H, Pougetb S, Craustec O, Meunierc T, Lévyc L P and Ballet P 2015 J. Cryst. Growth 425 195 doi: 10.1016/j.jcrysgro.2015.02.046}

    CrossRef Google Scholar

    [15]
    Leubner P, Lunczer L, Brüne C, Buhmann H and Molenkamp L W 2016 Phys. Rev. Lett. 117 086403 doi: 10.1103/PhysRevLett.117.086403}

    CrossRef Google Scholar

    [16]
    Feldman R D, Nakahara S, Opila R L, Austin R F and Boone T 1989 J. Cryst. Growth 98 581 doi: 10.1016/0022-02488990294-7}

    CrossRef Google Scholar

    [17]
    Schaake H F and Koestner R J 1988 J. Cryst. Growth 86 452 doi: 10.1016/0022-02489090758-D}

    CrossRef Google Scholar

    [18]
    Yang X Y, Wang G Y, Zhao C X, Zhu Z, Dong L, Li A M, Lv Y Y, Yao S H, Chen Y B, Guan D D, Li Y Y, Zheng H, Qian D, Liu C H, Chen Y L and Jia J F 2018 Chin. Phys. Lett. 35 026802 doi: 10.1088/0256-307X/35/2/026802}

    CrossRef Google Scholar

    [19]
    Beugeling W, Kalesaki E, Delerue C, Niquet Y M, Vanmaekelbergh D and Smith C M 2015 Nat. Commun. 6 6316 doi: 10.1038/ncomms7316}

    CrossRef Google Scholar

    [20]
    Liang F, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803 doi: 10.1103/PhysRevLett.98.106803}

    CrossRef Google Scholar

    [21]
    Zaheer S, Young S M, Cellucci D, Teo J C Y, Kane C L, Mele E J and Rappe A M 2013 Phys. Rev. B 87 045202 doi: 10.1103/PhysRevB.87.045202}

    CrossRef Google Scholar

    [22]
    Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J and Rappe A M 2012 Phys. Rev. Lett. 108 140405 doi: 10.1103/PhysRevLett.108.140405}

    CrossRef Google Scholar

    [23]
    Dresselhaus G 1955 Phys. Rev. 100 580 doi: 10.1103/PhysRev.100.580}

    CrossRef Google Scholar

    [24]
    Selvig E, Tonheim C R, Lorentzen T, Kongshaug K O, Skauli T and Haakenaasen R 2008 J. Electron. Mater. 37 1444 doi: 10.1007/s11664-008-0447-y}

    CrossRef Google Scholar

    [25]
    Matthews J W and Blakeslee A E 1974 J. Cryst. Growth 27 118 doi: 10.1016/S0022-02487480055-2}

    CrossRef Google Scholar

  • Related Articles

    [1]LI Li-Gong, LIU Shu-Man, LUO Shuai, YANG Tao, WANG Li-Jun, LIU Feng-Qi, YE Xiao-Ling, XU Bo, WANG Zhan-Guo. Metalorganic Chemical Vapor Deposition Growth of InAs/GaSb Superlattices on GaAs Substrates and Doping Studies of P-GaSb and N-InAs [J]. Chin. Phys. Lett., 2012, 29(7): 076801. doi: 10.1088/0256-307X/29/7/076801
    [2]LI Li-Gong, LIU Shu-Man, LUO Shuai, YANG Tao, WANG Li-Jun, LIU Feng-Qi, YE Xiao-Ling, XU Bo, WANG Zhan-Guo. Effect of Interface Bond Type on the Structure of InAs/GaSb Superlattices Grown by Metalorganic Chemical Vapor Deposition [J]. Chin. Phys. Lett., 2011, 28(11): 116802. doi: 10.1088/0256-307X/28/11/116802
    [3]WANG Guo-Wei, XU Ying-Qiang, GUO Jie, TANG Bao, REN Zheng-Wei, HE Zhen-Hong, NIU Zhi-Chuan. Growth and Characterization of GaSb-Based Type-II InAs/GaSb Superlattice Photodiodes for Mid-Infrared Detection [J]. Chin. Phys. Lett., 2010, 27(7): 077305. doi: 10.1088/0256-307X/27/7/077305
    [4]LIU Hong-Gang, JIN Zhi, SU Yong-Bo, WANG Xian-Tai, CHANG Hu-Dong, ZHOU Lei, LIU Xin-Yu, WU De-Xin. Extrinsic Base Surface Passivation in High Speed “Type-II'” GaAsSb/InP DHBTs Using an InGaAsP Ledge Structure [J]. Chin. Phys. Lett., 2010, 27(5): 058502. doi: 10.1088/0256-307X/27/5/058502
    [5]GUO Jie, SUN Wei-Guo, PENG Zhen-Yu, ZHOU Zhi-Qiang, XU Ying-Qiang, NIU Zhi-Chuan. Interfaces in InAs/GaSb Superlattices Grown by Molecular Beam Epitaxy [J]. Chin. Phys. Lett., 2009, 26(4): 047802. doi: 10.1088/0256-307X/26/4/047802
    [6]TANG Bao, XU Ying-Qiang, ZHOU Zhi-Qiang, HAO Rui-Ting, WANG Guo-Wei, REN Zheng-Wei, NIU Zhi-Chuan. GaAs Based InAs/GaSb Superlattice Short Wavelength Infrared Detectors Grown by Molecular Beam Epitaxy [J]. Chin. Phys. Lett., 2009, 26(2): 028102. doi: 10.1088/0256-307X/26/2/028102
    [7]ZHANG Jie, GUO Li-Wei, XING Zhi-Gang, GE Bing-Hui, DING Guo-Jian, PENG Ming-Zeng, JIA Hai-Qiang, ZHOU Jun-Ming, CHEN Hong. Growth of Highly Conductive n-Type Al0.7Ga0.3N Film by Using AlN Buffer with Periodical Variation of V / III Ratio [J]. Chin. Phys. Lett., 2008, 25(12): 4449-4452.
    [8]WANG Xian-Cheng, MA Hong-An, ZANG Chuan-Yi, TIAN Yu, LI Shang-Sheng, JIA Xiao-Peng. Growth of Large High-Quality Type-II a Diamond Crystals [J]. Chin. Phys. Lett., 2005, 22(7): 1800-1802.
    [9]XU Xiao-Hua, NIU Zhi-Chuan, NI Hai-Qiao, XU Ying-Qiang, ZHANG Wei, HE Zheng-Hong, HAN Qin, WU Rong-Han. Molecular Beam Epitaxy Growth and Photoluminescence of Type-II (GaAs1-xSbx/InyGa1-yAs)/GaAs Bilayer Quantum Well [J]. Chin. Phys. Lett., 2004, 21(9): 1831-1834.
    [10]LONG Fei, LIU Shenzhi, MEI Fei, MIAO Jingqi, LIANG Jingguo. Electronic Structure of Type-II InAs/GaSb Misaligned Superlattice [J]. Chin. Phys. Lett., 1994, 11(2): 109-112.

Catalog

    Article views (401) PDF downloads (416) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return