[1] | Sai-Halasz G A, Tsu R and Esaki L 1977 Appl. Phys. Lett. 30 651 | A new semiconductor superlattice
[2] | Wei Y, Gin A, Razeghi M and Brown G J 2002 Appl. Phys. Lett. 80 3262 | Advanced InAs/GaSb superlattice photovoltaic detectors for very long wavelength infrared applications
[3] | Johnson J L, Samoska L A, Gossard A C, Merz J L, Jack M D, Chapman G R, Baumgratz B A, Kasai K and Johnson S M 1996 J. Appl. Phys. 80 1116 | Electrical and optical properties of infrared photodiodes using the InAs/Ga1−xInxSb superlattice in heterojunctions with GaSb
[4] | Csuk R, Barthel A, Sczepek R, Siewert B and Schwarz S 1987 J. Appl. Phys. 62 2545 | Proposal for strained type II superlattice infrared detectors
[5] | Aifer E H, Tischler J G, Warner J H, Vurgaftman I, Kim J C, Meyer J R, Bennett B R, Whitman L J, Jackson E M and Lorentzen J R 2005 Proc. SPIE 5732 259 | W-structured type-II superlattice-based long- and very long wavelength infrared photodiodes
[6] | Mohseni H, Litvinov V I and Razeghi M 1998 Phys. Rev. B 58 15378 | Interface-induced suppression of the Auger recombination in type-II InAs/GaSb superlattices
[7] | Hao H Y, Wang G W, Wei X, Xi H, Xu Y Q, Liao Y Q, Yu Z, Ren Z W, Ni H Q and He Z H 2015 Infrared Phys. 72 276 | Fabrication of type-II InAs/GaSb superlattice long-wavelength infrared focal plane arrays
[8] | Chen J, Xu Q, Zhou Y, Jin J, Lin C and He L 2011 Nanoscale Res. Lett. 6 635 | Growth and fabrication of InAs/GaSb type II superlattice mid-wavelength infrared photodetectors
[9] | Chen J, Yi Z, Xu Z, Xu J J, Chen Q Q, Chen H L and Li H 2013 J. Cryst. Growth 378 596 | InAs/GaSb type-II superlattice mid-wavelength infrared focal plane array detectors grown by molecular beam epitaxy
[10] | Chen X D, Cao X C, Liang Z, Zhang L X and He Y J 2016 Opt. Quantum Electron. 48 84 | Short-wavelength infrared focal plane array based on type-II InAs/GaSb superlattice
[11] | Rhiger D R, Bornfreund R E, Hill C J and Gunapala S D 2007 Proc. SPIE 6542 654202 | SPIE Proceedings
[12] | Walther M, Schmitz J, Rehm R, Kopta S, Fuchs F, Fleißner J, Cabanski W and Ziegler J 2005 J. Cryst. Growth 278 156 | Growth of InAs/GaSb short-period superlattices for high-resolution mid-wavelength infrared focal plane array detectors
[13] | Gunapala S D, Ting D Z, Hill C J, Soibel A and Rafol S B 2010 Proc. SPIE 7808 780802 | SPIE Proceedings
[14] | Rhiger and David R 2011 J. Electron. Mater. 40 1815 | Performance Comparison of Long-Wavelength Infrared Type II Superlattice Devices with HgCdTe
[15] | Pullin M J, Hardaway H R, Heber J D and Phillips C C 1999 Appl. Phys. Lett. 75 3437 | Type-II InAs/InAsSb strained-layer-superlattice negative luminescence devices
[16] | Rogalski A and Martyniuk P 2005 Infrared Phys. 48 39 |
[17] | Hoang A M, Chen G, Haddadi A, Pour S A and Razeghi M 2012 Appl. Phys. Lett. 100 211101 | Demonstration of shortwavelength infrared photodiodes based on type-II InAs/GaSb/AlSb superlattices
[18] | Jiang Z, Sun Y Y, Guo C Y, Lv Y X, Hao H Y, Jiang D W, Wang G W, Xu Y Q and Niu Z C 2019 Chin. Phys. B 28 038504 | High quantum efficiency long-/long-wave dual-color type-II InAs/GaSb infrared detector
[19] | Rodriguez J B, Plis E, Bishop G, Sharma Y D, Kim H, Dawson L R and Krishna S 2007 Appl. Phys. Lett. 91 043514 | nBn structure based on InAs∕GaSb type-II strained layer superlattices
[20] | Connelly B C, Metcalfe G D, Shen H and Wraback M 2010 Appl. Phys. Lett. 97 251117 | Direct minority carrier lifetime measurements and recombination mechanisms in long-wave infrared type II superlattices using time-resolved photoluminescence
[21] | Svensson S P, Donetsky D, Ding W, Maloney P and Belenky G 2009 Appl. Phys. Lett. 95 1897 |
[22] | Wang G W, Xu Y Q, Gao J, Tang B, Ren Z W, He Z H and Niu Z C 2010 Chin. Phys. Lett. 27 077305 | Growth and Characterization of GaSb-Based Type-II InAs/GaSb Superlattice Photodiodes for Mid-Infrared Detection
[23] | Hua L I, Liu S, C E L L E K, Oray O, Ding D, S H E N, Xiao M, Steenbergen, Elizabeth H and Fan J 2013 J. Cryst. Growth 378 145 | A calibration method for group V fluxes and impact of V/III flux ratio on the growth of InAs/InAsSb type-II superlattices by molecular beam epitaxy
[24] | Jackson E M, Boishin G I, Aifer E H, Bennett B R and Whitman L J 2004 J. Cryst. Growth 270 301 | Arsenic cross-contamination in GaSb/InAs superlattices
[25] | Yu H L, Wu H Y, Zhu H J, Song G F and Xu Y 2016 Chin. Phys. Lett. 33 128103 | Molecular Beam Epitaxy of Zero Lattice-Mismatch InAs/GaSb Type-II Superlattice
[26] | Zhang Y, Ma W Q, Cao Y L, Huang J L, Yang W, Kai C and Shao J 2011 IEEE J. Quantum Electron. 47 1475 | Long Wavelength Infrared InAs/GaSb Superlattice Photodetectors With InSb-Like and Mixed Interfaces
[27] | Haugan H J, Grazulis L, Brown G J, Mahalingam K and Tomich D H 2004 J. Cryst. Growth 261 471 | Exploring optimum growth for high quality InAs/GaSb type-II superlattices
[28] | Haugan H J, Brown G J and Grazulis L 2011 J. Vac. Sci. & Technol. B 29 03C101 | Effect of interfacial formation on the properties of very long wavelength infrared InAs/GaSb superlattices
[29] | Klin O, Snapi N, Cohen Y and Weiss E 2015 J. Cryst. Growth 425 54 | A study of MBE growth-related defects in InAs/GaSb type-II supperlattices for long wavelength infrared detectors
[30] | Grundmann M, Stier O and Bimberg D 1995 Phys. Rev. B 52 11969 | InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure
[31] | Ledentsov N N, Shchukin V A, Grundmann M, Kirstatedter N, Böhrer J, Schmidt O, Bimberg D, Ustinov V M, Egorov A Y and Zhukov A E 1996 Phys. Rev. B 54 8743 | Direct formation of vertically coupled quantum dots in Stranski-Krastanow growth