Growth Control of High-Performance InAs/GaSb Type-II Superlattices via Optimizing the In/Ga Beam-Equivalent Pressure Ratio

Funds: Supported by the National Key Research and Development Program of China (Grant Nos. 2016YFB0402402 and 2016YFB0400601), the National Basic Research Program of China (Grant No. 2015CB351902), the National Science and Technology Major Project (2018ZX01005101-010), the National Natural Science Foundation of China (Grant Nos. 61835011 and U1431231), the Key Research Projects of the Frontier Science of the Chinese Academy of Sciences (Grant No. QYZDY-SSW-JSC004), and the Beijing Science and Technology Projects (Grant No. Z151100001615042).
  • Received Date: November 21, 2019
  • Published Date: February 29, 2020
  • The performance of type-II superlattice (T2SL) long-wavelength infrared devices is limited by crystalline quality of T2SLs. We optimize the process of growing molecular beam epitaxy deposition T2SL epi-layers on GaSb (100) to improve the material properties. Samples with identical structure but diverse In/Ga beam-equivalent pressure (BEP) ratio are studied by various methods, including high-resolution x-ray diffraction, atomic force microscopy and high-resolution transmission electron microscopy. We find that appropriately increasing the In/Ga BEP ratio contributes to improving the quality of T2SLs, but too large In BEP will much more easily cause a local strain, which can lead to more InSb islands in the InSb interfaces. The InSb islands melt in the InSb interfaces caused by the change of chemical potential of In atoms may result in the "nail" defects covering the whole T2SLs, especially the interfaces of GaSb-on-InAs. When the In/Ga BEP ratio is about 1, the T2SL material possesses a lower full width at half maximum of +1 first-order satellite peak, much smoother surface and excellently larger area uniformity.
  • Article Text

  • [1]
    Sai-Halasz G A, Tsu R and Esaki L 1977 Appl. Phys. Lett. 30 651 doi: 10.1063/1.89273}

    CrossRef Google Scholar

    [2]
    Wei Y, Gin A, Razeghi M and Brown G J 2002 Appl. Phys. Lett. 80 3262 doi: 10.1063/1.1476395}

    CrossRef Google Scholar

    [3]
    Johnson J L, Samoska L A, Gossard A C, Merz J L, Jack M D, Chapman G R, Baumgratz B A, Kasai K and Johnson S M 1996 J. Appl. Phys. 80 1116 doi: 10.1063/1.362849}

    CrossRef Google Scholar

    [4]
    Csuk R, Barthel A, Sczepek R, Siewert B and Schwarz S 1987 J. Appl. Phys. 62 2545 doi: 10.1063/1.339468}

    CrossRef Google Scholar

    [5]
    Aifer E H, Tischler J G, Warner J H, Vurgaftman I, Kim J C, Meyer J R, Bennett B R, Whitman L J, Jackson E M and Lorentzen J R 2005 Proc. SPIE 5732 259 doi: 10.1117/12.597134}

    CrossRef Google Scholar

    [6]
    Mohseni H, Litvinov V I and Razeghi M 1998 Phys. Rev. B 58 15378 doi: 10.1103/PhysRevB.58.15378}

    CrossRef Google Scholar

    [7]
    Hao H Y, Wang G W, Wei X, Xi H, Xu Y Q, Liao Y Q, Yu Z, Ren Z W, Ni H Q and He Z H 2015 Infrared Phys. 72 276 doi: 10.1016/j.infrared.2015.07.025}

    CrossRef Google Scholar

    [8]
    Chen J, Xu Q, Zhou Y, Jin J, Lin C and He L 2011 Nanoscale Res. Lett. 6 635 doi: 10.1186/1556-276X-6-635}

    CrossRef Google Scholar

    [9]
    Chen J, Yi Z, Xu Z, Xu J J, Chen Q Q, Chen H L and Li H 2013 J. Cryst. Growth 378 596 doi: 10.1016/j.jcrysgro.2012.12.113}

    CrossRef Google Scholar

    [10]
    Chen X D, Cao X C, Liang Z, Zhang L X and He Y J 2016 Opt. Quantum Electron. 48 84 doi: 10.1007/s11082-016-0375-7}

    CrossRef Google Scholar

    [11]
    Rhiger D R, Bornfreund R E, Hill C J and Gunapala S D 2007 Proc. SPIE 6542 654202 doi: 10.1117/12.716101}

    CrossRef Google Scholar

    [12]
    Walther M, Schmitz J, Rehm R, Kopta S, Fuchs F, Fleißner J, Cabanski W and Ziegler J 2005 J. Cryst. Growth 278 156 doi: 10.1016/j.jcrysgro.2004.12.044}

    CrossRef Google Scholar

    [13]
    Gunapala S D, Ting D Z, Hill C J, Soibel A and Rafol S B 2010 Proc. SPIE 7808 780802 doi: 10.1117/12.863989}

    CrossRef Google Scholar

    [14]
    Rhiger and David R 2011 J. Electron. Mater. 40 1815 doi: 10.1007/s11664-011-1653-6}

    CrossRef Google Scholar

    [15]
    Pullin M J, Hardaway H R, Heber J D and Phillips C C 1999 Appl. Phys. Lett. 75 3437 doi: 10.1063/1.125288}

    CrossRef Google Scholar

    [16]
    Rogalski A and Martyniuk P 2005 Infrared Phys. 48 39

    Google Scholar

    [17]
    Hoang A M, Chen G, Haddadi A, Pour S A and Razeghi M 2012 Appl. Phys. Lett. 100 211101 doi: 10.1063/1.4720094}

    CrossRef Google Scholar

    [18]
    Jiang Z, Sun Y Y, Guo C Y, Lv Y X, Hao H Y, Jiang D W, Wang G W, Xu Y Q and Niu Z C 2019 Chin. Phys. B 28 038504 doi: 10.1088/1674-1056/28/3/038504}

    CrossRef Google Scholar

    [19]
    Rodriguez J B, Plis E, Bishop G, Sharma Y D, Kim H, Dawson L R and Krishna S 2007 Appl. Phys. Lett. 91 043514 doi: 10.1063/1.2760153}

    CrossRef Google Scholar

    [20]
    Connelly B C, Metcalfe G D, Shen H and Wraback M 2010 Appl. Phys. Lett. 97 251117 doi: 10.1063/1.3529458}

    CrossRef Google Scholar

    [21]
    Svensson S P, Donetsky D, Ding W, Maloney P and Belenky G 2009 Appl. Phys. Lett. 95 1897

    Google Scholar

    [22]
    Wang G W, Xu Y Q, Gao J, Tang B, Ren Z W, He Z H and Niu Z C 2010 Chin. Phys. Lett. 27 077305 doi: 10.1088/0256-307X/27/7/077305}

    CrossRef Google Scholar

    [23]
    Hua L I, Liu S, C E L L E K, Oray O, Ding D, S H E N, Xiao M, Steenbergen, Elizabeth H and Fan J 2013 J. Cryst. Growth 378 145 doi: 10.1016/j.jcrysgro.2012.12.144}

    CrossRef Google Scholar

    [24]
    Jackson E M, Boishin G I, Aifer E H, Bennett B R and Whitman L J 2004 J. Cryst. Growth 270 301 doi: 10.1016/j.jcrysgro.2004.06.033}

    CrossRef Google Scholar

    [25]
    Yu H L, Wu H Y, Zhu H J, Song G F and Xu Y 2016 Chin. Phys. Lett. 33 128103 doi: 10.1088/0256-307X/33/12/128103}

    CrossRef Google Scholar

    [26]
    Zhang Y, Ma W Q, Cao Y L, Huang J L, Yang W, Kai C and Shao J 2011 IEEE J. Quantum Electron. 47 1475 doi: 10.1109/JQE.2011.2168947}

    CrossRef Google Scholar

    [27]
    Haugan H J, Grazulis L, Brown G J, Mahalingam K and Tomich D H 2004 J. Cryst. Growth 261 471 doi: 10.1016/j.jcrysgro.2003.09.045}

    CrossRef Google Scholar

    [28]
    Haugan H J, Brown G J and Grazulis L 2011 J. Vac. Sci. & Technol. B 29 03C101 doi: 10.1116/1.3525642}

    CrossRef Google Scholar

    [29]
    Klin O, Snapi N, Cohen Y and Weiss E 2015 J. Cryst. Growth 425 54 doi: 10.1016/j.jcrysgro.2015.03.038}

    CrossRef Google Scholar

    [30]
    Grundmann M, Stier O and Bimberg D 1995 Phys. Rev. B 52 11969 doi: 10.1103/PhysRevB.52.11969}

    CrossRef Google Scholar

    [31]
    Ledentsov N N, Shchukin V A, Grundmann M, Kirstatedter N, Böhrer J, Schmidt O, Bimberg D, Ustinov V M, Egorov A Y and Zhukov A E 1996 Phys. Rev. B 54 8743 doi: 10.1103/PhysRevB.54.8743}

    CrossRef Google Scholar

  • Related Articles

    [1]LI Li-Gong, LIU Shu-Man, LUO Shuai, YANG Tao, WANG Li-Jun, LIU Feng-Qi, YE Xiao-Ling, XU Bo, WANG Zhan-Guo. Metalorganic Chemical Vapor Deposition Growth of InAs/GaSb Superlattices on GaAs Substrates and Doping Studies of P-GaSb and N-InAs [J]. Chin. Phys. Lett., 2012, 29(7): 076801. doi: 10.1088/0256-307X/29/7/076801
    [2]LI Li-Gong, LIU Shu-Man, LUO Shuai, YANG Tao, WANG Li-Jun, LIU Feng-Qi, YE Xiao-Ling, XU Bo, WANG Zhan-Guo. Effect of Interface Bond Type on the Structure of InAs/GaSb Superlattices Grown by Metalorganic Chemical Vapor Deposition [J]. Chin. Phys. Lett., 2011, 28(11): 116802. doi: 10.1088/0256-307X/28/11/116802
    [3]WANG Guo-Wei, XU Ying-Qiang, GUO Jie, TANG Bao, REN Zheng-Wei, HE Zhen-Hong, NIU Zhi-Chuan. Growth and Characterization of GaSb-Based Type-II InAs/GaSb Superlattice Photodiodes for Mid-Infrared Detection [J]. Chin. Phys. Lett., 2010, 27(7): 077305. doi: 10.1088/0256-307X/27/7/077305
    [4]LIU Hong-Gang, JIN Zhi, SU Yong-Bo, WANG Xian-Tai, CHANG Hu-Dong, ZHOU Lei, LIU Xin-Yu, WU De-Xin. Extrinsic Base Surface Passivation in High Speed “Type-II'” GaAsSb/InP DHBTs Using an InGaAsP Ledge Structure [J]. Chin. Phys. Lett., 2010, 27(5): 058502. doi: 10.1088/0256-307X/27/5/058502
    [5]GUO Jie, SUN Wei-Guo, PENG Zhen-Yu, ZHOU Zhi-Qiang, XU Ying-Qiang, NIU Zhi-Chuan. Interfaces in InAs/GaSb Superlattices Grown by Molecular Beam Epitaxy [J]. Chin. Phys. Lett., 2009, 26(4): 047802. doi: 10.1088/0256-307X/26/4/047802
    [6]TANG Bao, XU Ying-Qiang, ZHOU Zhi-Qiang, HAO Rui-Ting, WANG Guo-Wei, REN Zheng-Wei, NIU Zhi-Chuan. GaAs Based InAs/GaSb Superlattice Short Wavelength Infrared Detectors Grown by Molecular Beam Epitaxy [J]. Chin. Phys. Lett., 2009, 26(2): 028102. doi: 10.1088/0256-307X/26/2/028102
    [7]ZHANG Jie, GUO Li-Wei, XING Zhi-Gang, GE Bing-Hui, DING Guo-Jian, PENG Ming-Zeng, JIA Hai-Qiang, ZHOU Jun-Ming, CHEN Hong. Growth of Highly Conductive n-Type Al0.7Ga0.3N Film by Using AlN Buffer with Periodical Variation of V / III Ratio [J]. Chin. Phys. Lett., 2008, 25(12): 4449-4452.
    [8]WANG Xian-Cheng, MA Hong-An, ZANG Chuan-Yi, TIAN Yu, LI Shang-Sheng, JIA Xiao-Peng. Growth of Large High-Quality Type-II a Diamond Crystals [J]. Chin. Phys. Lett., 2005, 22(7): 1800-1802.
    [9]XU Xiao-Hua, NIU Zhi-Chuan, NI Hai-Qiao, XU Ying-Qiang, ZHANG Wei, HE Zheng-Hong, HAN Qin, WU Rong-Han. Molecular Beam Epitaxy Growth and Photoluminescence of Type-II (GaAs1-xSbx/InyGa1-yAs)/GaAs Bilayer Quantum Well [J]. Chin. Phys. Lett., 2004, 21(9): 1831-1834.
    [10]LONG Fei, LIU Shenzhi, MEI Fei, MIAO Jingqi, LIANG Jingguo. Electronic Structure of Type-II InAs/GaSb Misaligned Superlattice [J]. Chin. Phys. Lett., 1994, 11(2): 109-112.

Catalog

    Article views (393) PDF downloads (282) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return