Bright-Dark Mode Coupling Model of Plasmons

Funds: Supported by the National Natural Science Foundation of China under Grant No. 11474191, and the Natural Science Foundation of Shaanxi Province under Grant No. 2018JQ1050.
  • Received Date: November 18, 2019
  • Published Date: February 29, 2020
  • We propose a coupling model to describe the interaction between the bright and dark modes of the plasmons of a dimer composed of two orthogonal gold nano-rods (GNRs), referred to as the BDMC model. This model shows that the eigen-frequencies of the coupled plasmons are governed by Coulomb potential and electrostatic potential. With the BDMC model, the behaviors of the coupling coefficient and the frequency offset, which is a new parameter introduced here, are revealed. Meanwhile, the asymmetric behavior of two eigen-frequencies related to gap of two GNRs is explained. Using the harmonic oscillator model and the coupled parameters obtained by the BDMC model, the bright mode absorption spectra of the dimer are calculated and the results agree with the numerical simulation.
  • Article Text

  • [1]
    Zhang S et al. 2008 Phys. Rev. Lett. 101 047401 doi: 10.1103/PhysRevLett.101.047401}

    CrossRef Google Scholar

    [2]
    Andrey E M et al. 2010 Rev. Mod. Phys. 82 2257 doi: 10.1103/RevModPhys.82.2257}

    CrossRef Google Scholar

    [3]
    Hao F et al. 2008 Nano Lett. 8 3983 doi: 10.1021/nl802509r}

    CrossRef Google Scholar

    [4]
    Dong Z G et al. 2010 Appl. Phys. Lett. 97 114101 doi: 10.1063/1.3488020}

    CrossRef Google Scholar

    [5]
    Hokari R et al. 2014 J. Opt. Soc. Am. B 31 1000 doi: 10.1364/JOSAB.31.001000}

    CrossRef Google Scholar

    [6]
    Kekatpure R D et al. 2010 Phys. Rev. Lett. 104 243902 doi: 10.1103/PhysRevLett.104.243902}

    CrossRef Google Scholar

    [7]
    Wang G et al. 2012 Opt. Express 20 20902 doi: 10.1364/OE.20.020902}

    CrossRef Google Scholar

    [8]
    Yang Z J et al. 2011 Opt. Lett. 36 1542 doi: 10.1364/OL.36.001542}

    CrossRef Google Scholar

    [9]
    Luk'yanchuk B et al. 2010 Nat. Mater. 9 707 doi: 10.1038/nmat2810}

    CrossRef Google Scholar

    [10]
    Mukherjee S et al. 2010 Nano Lett. 10 2694 doi: 10.1021/nl1016392}

    CrossRef Google Scholar

    [11]
    Zhang S et al. 2016 ACS Nano 10 11105 doi: 10.1021/acsnano.6b05979}

    CrossRef Google Scholar

    [12]
    Liu N et al. 2009 Nat. Mater. 8 758 doi: 10.1038/nmat2495}

    CrossRef Google Scholar

    [13]
    Cui C et al. 2018 ACS Photon. 5 4074 doi: 10.1021/acsphotonics.8b00754}

    CrossRef Google Scholar

    [14]
    Ai B et al. 2018 J. Phys. Chem. C 122 20935 doi: 10.1021/acs.jpcc.8b05154}

    CrossRef Google Scholar

    [15]
    Dong Z G et al. 2010 Opt. Express 18 18229 doi: 10.1364/OE.18.018229}

    CrossRef Google Scholar

    [16]
    Tian Y et al. 2017 Opt. Eng. 56 107106 doi: 10.1117/1.OE.56.10.107106}

    CrossRef Google Scholar

    [17]
    Xia S X et al. 2016 Opt. Express 24 17886 doi: 10.1364/OE.24.017886}

    CrossRef Google Scholar

    [18]
    Vafapour Z and Alaei H 2017 Plasmonics 12 479 doi: 10.1007/s11468-016-0288-0}

    CrossRef Google Scholar

    [19]
    Stete F et al. 2017 AfCS Photon. 4 1669 doi: 10.1021/acsphotonics.7b00113}

    CrossRef Google Scholar

    [20]
    Lee S et al. 2018 Opt. Express 26 21537 doi: 10.1364/OE.26.021537}

    CrossRef Google Scholar

    [21]
    Bakhti S et al. 2016 Sci. Rep. 6 32061 doi: 10.1038/srep32061}

    CrossRef Google Scholar

    [22]
    Yin S et al. 2015 Sci. Rep. 5 16440 doi: 10.1038/srep16440}

    CrossRef Google Scholar

    [23]
    Sarkar M et al. 2015 Opt. Express 23 27376 doi: 10.1364/OE.23.027376}

    CrossRef Google Scholar

    [24]
    Garrido Alzar C L et al. 2002 Am. J. Phys. 70 37 doi: 10.1119/1.1412644}

    CrossRef Google Scholar

    [25]
    Novotny L 2010 Am. J. Phys. 78 1199 doi: 10.1119/1.3471177}

    CrossRef Google Scholar

    [26]
    Lovera A et al. 2013 ACS Nano 7 4527 doi: 10.1021/nn401175j}

    CrossRef Google Scholar

    [27]
    Cheng H et al. 2013 Appl. Phys. Lett. 103 203112 doi: 10.1063/1.4831776}

    CrossRef Google Scholar

    [28]
    Zuloaga J and Nordlander P 2011 Nano Lett. 11 1280 doi: 10.1021/nl1043242}

    CrossRef Google Scholar

    [29]
    Lassiter J B et al. 2012 Nano Lett. 12 1058 doi: 10.1021/nl204303d}

    CrossRef Google Scholar

    [30]
    Davis T J and Gómez D E 2017 Rev. Mod. Phys. 89 011003 doi: 10.1103/RevModPhys.89.011003}

    CrossRef Google Scholar

    [31]
    Ma P P et al. 2016 Acta Phys. Sin. 65 217801 doi: 10.7498/aps.65.217801}

    CrossRef Google Scholar

    [32]
    Zhang J et al. 2018 J. Opt. Soc. Am. B 35 1854 doi: 10.1364/JOSAB.35.001854}

    CrossRef Google Scholar

    [33]
    Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370 doi: 10.1103/PhysRevB.6.4370}

    CrossRef Google Scholar

    [34]
    Sidorenko S and Martin O J F 2007 Opt. Express 15 6380 doi: 10.1364/OE.15.006380}

    CrossRef Google Scholar

    [35]
    Berenger J P 1994 J. Comput. Phys. 114 185 doi: 10.1006/jcph.1994.1159}

    CrossRef Google Scholar

    [36]
    Mittra R and Pekel U 1995 IEEE Microwave Guided Wave Lett. 5 84 doi: 10.1109/75.366461}

    CrossRef Google Scholar

Catalog

    Article views (225) PDF downloads (212) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return