[1] | Zhang S et al 2008 Phys. Rev. Lett. 101 047401 | Plasmon-Induced Transparency in Metamaterials
[2] | Andrey E M et al 2010 Rev. Mod. Phys. 82 2257 | Fano resonances in nanoscale structures
[3] | Hao F et al 2008 Nano Lett. 8 3983 | Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance
[4] | Dong Z G et al 2010 Appl. Phys. Lett. 97 114101 | Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials
[5] | Hokari R et al 2014 J. Opt. Soc. Am. B 31 1000 | Fabrication of planar metamaterials with sharp and strong electromagnetically induced transparency-like characteristics at wavelengths around 820 nm
[6] | Kekatpure R D et al 2010 Phys. Rev. Lett. 104 243902 | Phase-Coupled Plasmon-Induced Transparency
[7] | Wang G et al 2012 Opt. Express 20 20902 | Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency
[8] | Yang Z J et al 2011 Opt. Lett. 36 1542 | Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers
[9] | Luk'yanchuk B et al 2010 Nat. Mater. 9 707 | The Fano resonance in plasmonic nanostructures and metamaterials
[10] | Mukherjee S et al 2010 Nano Lett. 10 2694 | Fanoshells: Nanoparticles with Built-in Fano Resonances
[11] | Zhang S et al 2016 ACS Nano 10 11105 | Pronounced Fano Resonance in Single Gold Split Nanodisks with 15 nm Split Gaps for Intensive Second Harmonic Generation
[12] | Liu N et al 2009 Nat. Mater. 8 758 | Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit
[13] | Cui C et al 2018 ACS Photon. 5 4074 | Multiple Fano Resonances in Symmetry-Breaking Silicon Metasurface for Manipulating Light Emission
[14] | Ai B et al 2018 J. Phys. Chem. C 122 20935 | Strong Fano Resonance Excited in an Array of Nanoparticle-in-Ring Nanostructures for Dual Plasmonic Sensor Applications
[15] | Dong Z G et al 2010 Opt. Express 18 18229 | Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars
[16] | Tian Y et al 2017 Opt. Eng. 56 107106 | Tunable plasmon-induced transparency in plasmonic metamaterial composed of three identical rings
[17] | Xia S X et al 2016 Opt. Express 24 17886 | Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers
[18] | Vafapour Z and Alaei H 2017 Plasmonics 12 479 | Achieving a High Q-Factor and Tunable Slow-Light via Classical Electromagnetically Induced Transparency (Cl-EIT) in Metamaterials
[19] | Stete F et al 2017 AfCS Photon. 4 1669 | Signatures of Strong Coupling on Nanoparticles: Revealing Absorption Anticrossing by Tuning the Dielectric Environment
[20] | Lee S et al 2018 Opt. Express 26 21537 | Selective bright and dark mode excitation in coupled nanoantennas
[21] | Bakhti S et al 2016 Sci. Rep. 6 32061 | Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles
[22] | Yin S et al 2015 Sci. Rep. 5 16440 | Spoof surface plasmon polaritons in terahertz transmission through subwavelength hole arrays analyzed by coupled oscillator model
[23] | Sarkar M et al 2015 Opt. Express 23 27376 | Generalized analytical model based on harmonic coupling for hybrid plasmonic modes: comparison with numerical and experimental results
[24] | Garrido Alzar C L et al 2002 Am. J. Phys. 70 37 | Classical analog of electromagnetically induced transparency
[25] | Novotny L 2010 Am. J. Phys. 78 1199 | Strong coupling, energy splitting, and level crossings: A classical perspective
[26] | Lovera A et al 2013 ACS Nano 7 4527 | Mechanisms of Fano Resonances in Coupled Plasmonic Systems
[27] | Cheng H et al 2013 Appl. Phys. Lett. 103 203112 | Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips
[28] | Zuloaga J and Nordlander P 2011 Nano Lett. 11 1280 | On the Energy Shift between Near-Field and Far-Field Peak Intensities in Localized Plasmon Systems
[29] | Lassiter J B et al 2012 Nano Lett. 12 1058 | Designing and Deconstructing the Fano Lineshape in Plasmonic Nanoclusters
[30] | Davis T J and Gómez D E 2017 Rev. Mod. Phys. 89 011003 | Colloquium : An algebraic model of localized surface plasmons and their interactions
[31] | Ma P P et al 2016 Acta Phys. Sin. 65 217801 |
[32] | Zhang J et al 2018 J. Opt. Soc. Am. B 35 1854 | Extended coupled Lorentz oscillator model and analogue of electromagnetically induced transparency in coupled plasmonic structures
[33] | Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370 | Optical Constants of the Noble Metals
[34] | Sidorenko S and Martin O J F 2007 Opt. Express 15 6380 | Resonant tunneling of surface plasmon-polaritons
[35] | Berenger J P 1994 J. Comput. Phys. 114 185 | A perfectly matched layer for the absorption of electromagnetic waves
[36] | Mittra R and Pekel U 1995 IEEE Microwave Guided Wave Lett. 5 84 | A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves