[1] | Grenier M, Mandel O, Esslinger T, Hänsch T W and Bloch I 2002 Nature 415 39 | Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms
[2] | Léonard J, Morales A, Zupancic P, Esslinger T and Donner T 2017 Nature 543 87 | Supersolid formation in a quantum gas breaking a continuous translational symmetry
[3] | Léonard J, Morales A, Zupancic P, Donner T and Esslinger T 2017 Science 358 1415 | Monitoring and manipulating Higgs and Goldstone modes in a supersolid quantum gas
[4] | Steinke S K, Singh S, Tasgin M E, Meystre P, Schwab K C and Vengalattore M 2011 Phys. Rev. A 84 023841 | Quantum-measurement backaction from a Bose-Einstein condensate coupled to a mechanical oscillator
[5] | Calarco T, Dorner U, Julienne P S, Williams C J and Zoller P 2004 Phys. Rev. A 70 012306 | Quantum computations with atoms in optical lattices: Marker qubits and molecular interactions
[6] | Byrnes T, Wen K and Yamamoto Y 2012 Phys. Rev. A 85 040306(R) | Macroscopic quantum computation using Bose-Einstein condensates
[7] | Vinit A and Raman C 2017 Phys. Rev. A 95 011603 | Precise measurements on a quantum phase transition in antiferromagnetic spinor Bose-Einstein condensates
[8] | Rudolph J, Herr W, Grzeschik C, Sternke T, Grote A, Popp M, Becker D, Mntinga H, Ahlers H, Peters A, Lmmerzahl C, Sengstock K, Gaaloul N, Ertmer W and Rasel E M 2015 New J. Phys. 17 065001 | A high-flux BEC source for mobile atom interferometers
[9] | Pyrkov A N and Byrnes T 2013 New J. Phys. 15 093019 | Entanglement generation in quantum networks of Bose–Einstein condensates
[10] | Ketterle W and Van D N J 1996 Adv. At. Mol. Opt. Phys. 37 181 |
[11] | Mewes M O, Andrews M R, Druten N J V, Kurn D M, Durfee D S, Townsend C G and Ketterle W 1996 Phys. Rev. Lett. 77 988 | Collective Excitations of a Bose-Einstein Condensate in a Magnetic Trap
[12] | Jin D S, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1996 Phys. Rev. Lett. 77 420 | Collective Excitations of a Bose-Einstein Condensate in a Dilute Gas
[13] | Urvoy A, Vendeiro Z, Ramette J, Adiyatullin A and Vuletić V 2019 Phys. Rev. Lett. 122 203202 | Direct Laser Cooling to Bose-Einstein Condensation in a Dipole Trap
[14] | Colzi G, Fava E, Barbiero M, Mordini C, Lamporesi G and Ferrari G 2018 Phys. Rev. A 97 053625 | Production of large Bose-Einstein condensates in a magnetic-shield-compatible hybrid trap
[15] | Xie D Z, Wang D Y, Gou W, Bu W H and Yan B 2018 J. Opt. Soc. Am. B 35 500 | Fast production of rubidium Bose–Einstein condensate in a dimple trap
[16] | Jacob D, Mimoun E, Sarlo L D, Weitz M, Dalibard J and Gerbier F 2011 New J. Phys. 13 065022 | Production of sodium Bose–Einstein condensates in an optical dimple trap
[17] | Zhang D W, Zhu Y Q, Zhao Y X, Yan H and Zhu S L 2018 Adv. Phys. 67 253 | Topological quantum matter with cold atoms
[18] | Lin Y J, Jiménez G K and Spielman I B 2011 Nature 471 83 | Spin?orbit-coupled Bose?Einstein condensates
[19] | Williams R A, LeBlanc L J, Jiménez G K, Beeler M C, Perry A R, Phillips W D and Spielman I B 2012 Science 335 314 | Synthetic Partial Waves in Ultracold Atomic Collisions
[20] | Ji S C, Zhang J Y, Zhang L, Du Z D, Zheng W, Deng Y J, Zhai H, Chen S and Pan J W 2014 Nat. Phys. 10 314 | Experimental determination of the finite-temperature phase diagram of a spin–orbit coupled Bose gas
[21] | Wu X, Zhang L, Sun W, Xu T X, Wang Z B, Ji C S, Deng J Y, Chen S, Liu J X and Pan J W 2016 Science 354 83 | Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates
[22] | Clark L M, Feng L and Chin C 2016 Science 354 606 | Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition
[23] | Sugawa S J, Salces C F, Perry A R, Yue Y C and Spielman I B 2018 Science 360 1429 | Second Chern number of a quantum-simulated non-Abelian Yang monopole
[24] | Deng S J, Shi Z Y, Diao P P, Yu Q L, Zhai H, Qi R and Wu H B 2016 Science 353 371 | Observation of the Efimovian expansion in scale-invariant Fermi gases
[25] | Tang P J, Peng P, Li Z H, Chen X Z, Li X P and Zhou X J 2019 Phys. Rev. A 100 013618 | Parallel multicomponent interferometer with a spinor Bose-Einstein condensate
[26] | Luo X Y, Zou Y Q, Wu L N, Liu Q, Han M F, Tey M K and You L 2017 Science 355 620 | Random bosonic states for robust quantum metrology
[27] | Chen L C, Wang P J, Meng Z M, Huang L H, Cai H, Wang D W, Zhu S Y and Zhang J 2018 Phys. Rev. Lett. 120 193601 | Experimental Observation of One-Dimensional Superradiance Lattices in Ultracold Atoms
[28] | Hu Z F, Liu C P, Liu J M and Wang Y Z 2018 Opt. Express 26 20122 | Electromagnetically induced transparency in a spin-orbit coupled Bose-Einstein condensate
[29] | Zhang D F, Gao T Y, Zou P, Kong L R, Li R Z, Shen X, Chen X L, Peng S G, Zhan M S, Pu H and Jiang K J 2019 Phys. Rev. Lett. 122 110402 | Ground-State Phase Diagram of a Spin-Orbital-Angular-Momentum Coupled Bose-Einstein Condensate
[30] | Deng L, Hagley E W, Cao Q, Wang X R, Luo X Y, Wang R Q, Payne M G, Yang F, Zhou X J, Chen X Z and Zhan M S 2010 Phys. Rev. Lett. 105 220404 | Observation of a Red-Blue Detuning Asymmetry in Matter-Wave Superradiance
[31] | Dai H N, Yang B, Reingruber A, Xu X F, Jiang X, Chen Y A, Yuan Z S and Pan J W 2016 Nat. Phys. 12 783 | Generation and detection of atomic spin entanglement in optical lattices
[32] | Yang B, Chen Y Y, Zheng Y G, Sun H, Dai H N, Guan X W, Yuan Z S and Pan J W 2017 Phys. Rev. Lett. 119 165701 | Quantum criticality and the Tomonaga-Luttinger liquid in one-dimensional Bose gases
[33] | Yang S F, Xu Z T, Wang K, Li X F, Zhai Y Y and Chen X Z 2019 Chin. Phys. Lett. 36 080302 | A Quasi-1D Potential for Bose Gas Phase Fluctuations
[34] | Nawaz K S, Mi C D, Chen L C, Wang P J and Zhang J 2019 Chin. Phys. Lett. 36 043201 | Experimental Investigation of the Electromagnetically Induced-Absorption-Like Effect for an N-Type Energy Level in a Rubidium BEC
[35] | Qi W, Liang M C, Zhang H, Wei Y D, Wang W W, Wang X J and Zhang X B 2019 Chin. Phys. Lett. 36 093701 | Experimental Realization of Degenerate Fermi Gases of 87 Sr Atoms with 10 or Two Spin Components
[36] | Peng P, Huang L H, Li D H, Wang P J, Meng Z M and Zhang J 2018 Chin. Phys. Lett. 35 063201 | Influence on the Lifetime of 87 Rb Bose–Einstein Condensation for Far-Detuning Single-Frequency Lasers with Different Phase Noises
[37] | Ma X B, Ye Z X, Xie L Y, Guo Z, You L and Tey M K 2019 Chin. Phys. Lett. 36 073401 | Measurement of S-Wave Scattering Length between 6 Li and 88 Sr Atoms Using Interspecies Thermalization in an Optical Dipole Trap
[38] | Zhou J W, Li X X, Gao R, Qin W S, Jiang H H, Li T T and Xue J K 2019 Chin. Phys. Lett. 36 090302 | Modulational Instability of Trapped Two-Component Bose–Einstein Condensates
[39] | Wei Y W, Kong C and Hai W H 2019 Chin. Phys. B 28 056701 | Spatiotemporal Bloch states of a spin–orbit coupled Bose–Einstein condensate in an optical lattice
[40] | Huang L H, Wang P J, Fu Z K and Zhang J 2014 Chin. Phys. B 23 013402 | Radio-frequency spectroscopy of weakly bound molecules in ultracold Fermi gas
[41] | Liu C, Yang Z Y, Zhao L C, Yang W L and Yue R H 2013 Chin. Phys. Lett. 30 040304 | Long-Lived Rogue Waves and Inelastic Interaction in Binary Mixtures of Bose—Einstein Condensates
[42] | Wang Y M and Liang J Q 2012 Chin. Phys. B 21 060305 | Quantum phases of Bose gases on a lattice with pair-tunneling
[43] | Olson A J, Niffenegger R J and Chen Y P 2013 Phys. Rev. A 87 053613 | Optimizing the efficiency of evaporative cooling in optical dipole traps
[44] | Kinoshita T, Wenger T and Weiss D S 2005 Phys. Rev. A 71 011602 | All-optical Bose-Einstein condensation using a compressible crossed dipole trap
[45] | Lin Y J, Perry A R, Compton R L, Spielman I B and Porto J V 2009 Phys. Rev. A 79 063631 | Rapid production of Bose-Einstein condensates in a combined magnetic and optical potential
[46] | Roy R, Green A, Bowler R and Gupta S 2016 Phys. Rev. A 93 043403 | Rapid cooling to quantum degeneracy in dynamically shaped atom traps
[47] | Dunning A, Gregory R, Bateman J, Himsworth M and Freegarde T 2015 Phys. Rev. Lett. 115 073004 | Interferometric Laser Cooling of Atomic Rubidium
[48] | Schemmer M and Bouchoule I 2018 Phys. Rev. Lett. 121 200401 | Cooling a Bose Gas by Three-Body Losses
[49] | Hu J, Urvoy A, Vendeiro Z, Crépel V, Chen W and Vuletić V 2017 Science 358 1078 | Creation of a Bose-condensed gas of 87 Rb by laser cooling
[50] | Jiang J, Zhao L, Webb M, Jiang N, Yang H and Liu Y 2013 Phys. Rev. A 88 033620 | Simple and efficient all-optical production of spinor condensates
[51] | Song B, He C D, Zhang S C, Hajiyev E, Huang W, Liu X J and Jo G B 2016 Phys. Rev. A 94 061604(R) | Spin-orbit-coupled two-electron Fermi gases of ytterbium atoms
[52] | Granade S R, Gehm M E, O'Hara K M and Thomas J E 2002 Phys. Rev. Lett. 88 120405 | All-Optical Production of a Degenerate Fermi Gas
[53] | Hansen A H, Khramov A Y, Dowd W H, Jamison A O, Plotkin S B, Roy R J and Gupta S 2013 Phys. Rev. A 87 013615 | Production of quantum-degenerate mixtures of ytterbium and lithium with controllable interspecies overlap
[54] | Duan Y F, Jiang B N, Sun J F, Liu K K, Xu Z and Wang Y Z 2013 Chin. Phys. B 22 056701 | Production of 87 Rb Bose—Einstein condensates in a hybrid trap
[55] | Hung C L, Zhang X, Gemelke N and Chin C 2008 Phys. Rev. A 78 011604 | Accelerating evaporative cooling of atoms into Bose-Einstein condensation in optical traps
[56] | Clément J F, Brantut J P, Robert S V M, Nyman R A, Aspect A, Bourdel T and Bouyer P 2009 Phys. Rev. A 79 061406 | All-optical runaway evaporation to Bose-Einstein condensation
[57] | Arnold K and Barrett M 2011 Opt. Commun. 284 3288 | All-optical Bose–Einstein condensation in a 1.06μm dipole trap
[58] | Weber T, Herbig J, Mark M, Nägerl H C and Grimm R 2003 Science 299 232 | Bose-Einstein Condensation of Cesium
[59] | Luiten O J, Reynolds M W and Walraven J T M 1996 Phys. Rev. A 53 381 | Kinetic theory of the evaporative cooling of a trapped gas
[60] | O'Hara K M, Gehm M E, Granade S R and Thomas J E 2001 Phys. Rev. A 64 051403(R) | Scaling laws for evaporative cooling in time-dependent optical traps
[61] | Williams M J and Fertig C 2015 Phys. Rev. A 91 023432 | Multipartite model of evaporative cooling in optical dipole traps
[62] | Yamashita M, Koashi M, Mukai T, Mitsunaga M, Imoto N and Mukai T 2003 Phys. Rev. A 67 023601 | Optimization of evaporative cooling towards a large number of Bose-Einstein-condensed atoms
[63] | Wigley P B, Everitt P J, Hengel A V D, Bastian J W, Sooriyabandara M A, McDonald G D, Hardman K S, Quinlivan C D, Manju P, Kuhn C N N, Petersen I R, Luiten A N, Hope J J, Robins N P and Hush M R 2016 Sci. Rep. 6 25890 | Fast machine-learning online optimization of ultra-cold-atom experiments
[64] | Stellmer S, Tey M K, Huang B, Grimm R and Schreck F 2009 Phys. Rev. Lett. 103 200401 | Bose-Einstein Condensation of Strontium
[65] | Mishra H P, Flores A S, Vassen W and Knoop S 2015 Eur. Phys. J. D 69 52 | Efficient production of an 87Rb F = 2, mF = 2 Bose-Einstein condensate in a hybrid trap
[66] | Burt E A, Ghrist R W, Myatt C J, Holland M J, Cornell E A and Wieman C E 1997 Phys. Rev. Lett. 79 337 | Coherence, Correlations, and Collisions: What One Learns about Bose-Einstein Condensates from Their Decay
[67] | Kempen E G M V, Kokkelmans S J J M F, Heinzen D J and Verhaar B J 2002 Phys. Rev. Lett. 88 093201 | Interisotope Determination of Ultracold Rubidium Interactions from Three High-Precision Experiments