[1] | Barenghi C F and Parker N G 2016 A Primer on Quantum Fluids (Berlin: Springer) |
[2] | Carusotto I and Ciuti C 2013 Rev. Mod. Phys. 85 299 | Quantum fluids of light
[3] | Hasimoto H 1972 J. Fluid Mech. 51 477 | A soliton on a vortex filament
[4] | Salman H 2013 Phys. Rev. Lett. 111 165301 | Breathers on Quantized Superfluid Vortices
[5] | Salman H 2014 J. Phys.: Conf. Ser. 544 012005 | Multiple breathers on a vortex filament
[6] | Arms R J and Hama F R 1965 Phys. Fluids 8 553 | Localized-Induction Concept on a Curved Vortex and Motion of an Elliptic Vortex Ring
[7] | Da Rios L S 1906 Rendiconti del Circolo Matematico di Palermo 22 117 | Sul moto d’un liquido indefinito con un filetto vorticoso di forma qualunque
[8] | Betchov R 1965 J. Fluid Mech. 22 471 | On the curvature and torsion of an isolated vortex filament
[9] | Fukumoto Y and Miyazaki T 1991 J. Fluid Mech. 222 369 | Three-dimensional distortions of a vortex filament with axial velocity
[10] | Maxworthy T, Hopfinger E J and Redekopp L G 1985 J. Fluid Mech. 151 141 | Wave motions on vortex cores
[11] | Maxworthy T, Mory M and Hopfinger E J 1983 AGARD Conference Proceedings 342 paper 29 |
[12] | Demontis F, Ortenzi G and Van Der Mee C 2015 Physica D 313 61 | Exact solutions of the Hirota equation and vortex filaments motion
[13] | Moore D W and Saffman P G 1972 Philos. Trans. Roy. Soc. London Ser. A 272 403 | The Motion of a Vortex Filament with Axial Flow
[14] | Pismen L M 1999 Vortices in Nonlinear Fields (Oxford: Clarendon) |
[15] | Hirota R 1973 J. Math. Phys. 14 805 | Exact envelope‐soliton solutions of a nonlinear wave equation
[16] | Li H, Liu C, Zhao W, Yang Z Y and Yang W L 2019 arXiv:1905.07878 [nlin.PS] | Breather induced quantized superfluid vortex filaments and their characterization
[17] | Shah R 2015 Rogue Waves on a Vortex Filament (Oxford: Oxford University Press) |
[18] | Liu C, Yang Z Y, Zhao L C, Duan L, Yang G Y and Yang W L 2016 Phys. Rev. E 94 042221 | Symmetric and asymmetric optical multipeak solitons on a continuous wave background in the femtosecond regime
[19] | Li Z H, Li L, Tian H P and Zhou G S 2000 Phys. Rev. Lett. 84 4096 | New Types of Solitary Wave Solutions for the Higher Order Nonlinear Schrödinger Equation
[20] | Zhao L C, Li S C and Ling L M 2014 Phys. Rev. E 89 023210 | Rational W-shaped solitons on a continuous-wave background in the Sasa-Satsuma equation
[21] | Liu C, Yang Z Y, Zhao L C and Yang W L 2015 Phys. Rev. E 91 022904 | State transition induced by higher-order effects and background frequency
[22] | Kuznetsov E 1977 Sov. Phys. Dokl. 22 507 |
| Ma Y C 1979 Stud. Appl. Math. 60 43 | The Perturbed Plane-Wave Solutions of the Cubic Schrödinger Equation
[23] | Kivshar Y S 1991 Phys. Rev. A 43 1677(R) | Nonlinear dynamics near the zero-dispersion point in optical fibers
| Kivshar Y S and Afanasjev V V 1991 Phys. Rev. A 44 R1446 | Dark optical solitons with reverse-sign amplitude