[1] | Deegan R D, Bakajin O, Dupont T F et al 1997 Nature 389 827 | Capillary flow as the cause of ring stains from dried liquid drops
[2] | Larson R G 2017 Nature 550 466 | Twenty years of drying droplets
[3] | Minemawari H, Yamada T, Matsui H et al 2011 Nature 475 364 | Inkjet printing of single-crystal films
[4] | Yunker P J, Still T, Lohr M A et al 2011 Nature 476 308 | Suppression of the coffee-ring effect by shape-dependent capillary interactions
[5] | 2014 Nature 515 166 | Controlling the coffee-ring effect
[6] | Han W and Lin Z 2012 Angew. Chem. Int. Ed. 51 1534 | Learning from “Coffee Rings”: Ordered Structures Enabled by Controlled Evaporative Self-Assembly
[7] | Zhang Z, Zhang X, Xin Z et al 2013 Adv. Mater. 25 6714 | Controlled Inkjetting of a Conductive Pattern of Silver Nanoparticles Based on the Coffee-Ring Effect
[8] | Diao Y, Tee B C K, Giri G et al 2013 Nat. Mater. 12 665 | Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains
[9] | Devineau S, Anyfantakis M, Marichal L et al 2016 J. Am. Chem. Soc. 138 11623 | Protein Adsorption and Reorganization on Nanoparticles Probed by the Coffee-Ring Effect: Application to Single Point Mutation Detection
[10] | Liu G L, Kim J, Lu Y et al 2006 Nat. Mater. 5 27 | Optofluidic control using photothermal nanoparticles
[11] | Sempels W, De Dier R, Mizuno H et al 2013 Nat. Commun. 4 1757 | Auto-production of biosurfactants reverses the coffee ring effect in a bacterial system
[12] | Talbot E L, Yang L, Berson A et al 2014 ACS Appl. Mater. & Interfaces 6 9572 | Control of the Particle Distribution in Inkjet Printing through an Evaporation-Driven Sol–Gel Transition
[13] | Bail R, Hong J Y and Chin B D 2018 RSC Adv. 8 11191 | Inkjet printing of blue phosphorescent light-emitting layer based on bis(3,5-di(9 H -carbazol-9-yl))diphenylsilane
[14] | Gorr H M, Zueger J M and Barnard J A 2012 J. Phys. Chem. B 116 12213 | Characteristic Size for Onset of Coffee-Ring Effect in Evaporating Lysozyme-Water Solution Droplets
[15] | Lei Y, Zhang X, Xu D et al 2018 J. Phys. Chem. Lett. 9 2380 | Dynamic “Scanning-Mode” Meniscus Confined Electrodepositing and Micropatterning of Individually Addressable Ultraconductive Copper Line Arrays
[16] | Cui L, Zhang J, Zhang X et al 2012 ACS Appl. Mater. & Interfaces 4 2775 | Suppression of the Coffee Ring Effect by Hydrosoluble Polymer Additives
[17] | Li Y, Yang Q, Li M et al 2016 Sci. Rep. 6 24628 | Rate-dependent interface capture beyond the coffee-ring effect
[18] | Manos A and Damien B 2014 Angew. Chem. Int. Ed. 53 14077 | Dynamic Photocontrol of the Coffee-Ring Effect with Optically Tunable Particle Stickiness
[19] | Seo C, Jang D, Chae J et al 2017 Sci. Rep. 7 500 | Altering the coffee-ring effect by adding a surfactant-like viscous polymer solution
[20] | Anyfantakis M, Geng Z, Morel M et al 2015 Langmuir 31 4113 | Modulation of the Coffee-Ring Effect in Particle/Surfactant Mixtures: the Importance of Particle–Interface Interactions
[21] | Tekin E, De Gans B J and Schubert U S 2004 J. Mater. Chem. 14 2627 | Ink-jet printing of polymers ? from single dots to thin film libraries
[22] | Soltman D and Subramanian V 2008 Langmuir 24 2224 | Inkjet-Printed Line Morphologies and Temperature Control of the Coffee Ring Effect
[23] | Yen T M, Fu X, Wei T et al 2018 Sci. Rep. 8 3157 | Reversing Coffee-Ring Effect by Laser-Induced Differential Evaporation
[24] | Dugyala V R and Basavaraj M G 2014 Langmuir 30 8680 | Control over Coffee-Ring Formation in Evaporating Liquid Drops Containing Ellipsoids
[25] | Larson R G 2012 Angew. Chem. Int. Ed. 51 2546 | Re-Shaping the Coffee Ring
[26] | Liu L H , Zorn G, Castner D G et al 2010 J. Mater. Chem. 20 5041 | A simple and scalable route to wafer-size patterned graphene
[27] | Shuping P, Yenny H, Xinliang F et al 2011 Adv. Mater. 23 2779 | Graphene as Transparent Electrode Material for Organic Electronics
[28] | Novoselov K S, Fal'ko V I, Colombo L et al 2012 Nature 490 192 | A roadmap for graphene
[29] | Esfandiar A, Radha B, Wang F C et al 2017 Science 358 511 | Size effect in ion transport through angstrom-scale slits
[30] | Jain T, Rasera B C, Guerrero R J S et al 2015 Nat. Nanotechnol. 10 1053 | Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores
[31] | Wu X, Pei Y and Zeng X C 2009 Nano Lett. 9 1577 | B 2 C Graphene, Nanotubes, and Nanoribbons
[32] | Stankovich S, Dikin D A, Dommett G H B et al 2006 Nature 442 282 | Graphene-based composite materials
[33] | Yasaei P, Kumar B, Hantehzadeh R et al 2014 Nat. Commun. 5 4911 | Chemical sensing with switchable transport channels in graphene grain boundaries
[34] | Secor E B, Lim S, Zhang H et al 2014 Adv. Mater. 26 4533 | Gravure Printing of Graphene for Large-area Flexible Electronics
[35] | Shi G, Chen L, Yang Y et al 2018 Nat. Chem. 10 776 | Two-dimensional Na–Cl crystals of unconventional stoichiometries on graphene surface from dilute solution at ambient conditions
[36] | Chen L, Shi G, Shen J et al 2017 Nature 550 380 | Ion sieving in graphene oxide membranes via cationic control of interlayer spacing
[37] | Shi G, Liu J, Wang C et al 2013 Sci. Rep. 3 3436 | Ion Enrichment on the Hydrophobic Carbon-based Surface in Aqueous Salt Solutions due to Cation-π Interactions
[38] | Ma J C and Dougherty D A 1997 Chem. Rev. 97 1303 | The Cation−π Interaction
[39] | Mahadevi A S and Sastry G N 2013 Chem. Rev. 113 2100 | Cation−π Interaction: Its Role and Relevance in Chemistry, Biology, and Material Science
[40] | Shi G, Dang Y, Pan T et al 2016 Phys. Rev. Lett. 117 238102 | Unexpectedly Enhanced Solubility of Aromatic Amino Acids and Peptides in an Aqueous Solution of Divalent Transition-Metal Cations