[1] | Hills G et al 2019 Nature 572 595 | Modern microprocessor built from complementary carbon nanotube transistors
[2] | Dresselhaus G and Riichiro S 1998 Physical Properties of Carbon Nanotubes (London: Imperial College Press) |
[3] | Dresselhaus M S et al 1996 Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications (Amsterdam: Elsevier) |
[4] | Tans S J et al 1998 Nature 393 49 | Room-temperature transistor based on a single carbon nanotube
[5] | Bachtold A et al 2001 Science 294 1317 | Logic Circuits with Carbon Nanotube Transistors
[6] | Chen Z et al 2006 Science 311 1735 | An Integrated Logic Circuit Assembled on a Single Carbon Nanotube
[7] | Javey A et al 2005 Nano Lett. 5 345 | High Performance n-Type Carbon Nanotube Field-Effect Transistors with Chemically Doped Contacts
[8] | Ha N V and Song H J 2015 Chin. Phys. Lett. 32 038201 | Impact of Temperature Variation on Performance of Carbon Nanotube Field-Effect Transistor—Based on Chaotic Oscillator: A Quantum Simulation Study
[9] | Tans S J et al 1997 Nature 386 474 | Individual single-wall carbon nanotubes as quantum wires
[10] | White C T and Todorov T N 1998 Nature 393 240 | Carbon nanotubes as long ballistic conductors
[11] | Kong J et al 2001 Phys. Rev. Lett. 87 106801 | Quantum Interference and Ballistic Transmission in Nanotube Electron Waveguides
[12] | Lv Y Z et al 2017 Chin. Phys. Lett. 34 047302 | Magnetic Transport Properties of Fe-Phthalocyanine Dimer with Carbon Nanotube Electrodes
[13] | Close G F et al 2008 Nano Lett. 8 706 | A 1 GHz Integrated Circuit with Carbon Nanotube Interconnects and Silicon Transistors
[14] | Debjit C et al 2003 J. Am. Chem. Soc. 125 3370 | A Route for Bulk Separation of Semiconducting from Metallic Single-Wall Carbon Nanotubes
[15] | Chen Z, Du X, Du M H, Rancken C D, Cheng H P and Rinzler A G 2003 Nano Lett. 3 1245 | Bulk Separative Enrichment in Metallic or Semiconducting Single-Walled Carbon Nanotubes
[16] | Yang F, Wang X, Zhang D, Yang J, Luo D, Xu Z, Wei J, Wang J Q , Xu Z and Peng F 2014 Nature 510 522 | Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts
[17] | Qin X, Peng F, Yang F, He X, Huang H, Luo D, Yang J, Wang S, Liu H and Peng L 2014 Nano Lett. 14 512 | Growth of Semiconducting Single-Walled Carbon Nanotubes by Using Ceria as Catalyst Supports
[18] | Bachtold A, Fuhrer M, Plyasunov S, Forero M, Anderson E H, Zettl A and McEuen P L 2000 Phys. Rev. Lett. 84 6082 | Scanned Probe Microscopy of Electronic Transport in Carbon Nanotubes
[19] | Lu W, Xiong Y, Hassanien A, Zhao W, Zheng M and Chen L 2009 Nano Lett. 9 1668 | A Scanning Probe Microscopy Based Assay for Single-Walled Carbon Nanotube Metallicity
[20] | Heo J and Bockrath M 2005 Nano Lett. 5 853 | Local Electronic Structure of Single-Walled Carbon Nanotubes from Electrostatic Force Microscopy
[21] | Li J, He Y, Han Y, Liu K, Wang J, Li Q, Fan S and Jiang K 2012 Nano Lett. 12 4095 | Direct Identification of Metallic and Semiconducting Single-Walled Carbon Nanotubes in Scanning Electron Microscopy
[22] | Dresselhaus M S, Dresselhaus G, Saito R and Jorio A 2005 Phys. Rep. 409 47 | Raman spectroscopy of carbon nanotubes
[23] | Jorio A, Saito R, Hafner J, Lieber C, Hunter D, McClure T, Dresselhaus G and Dresselhaus M 2001 Phys. Rev. Lett. 86 1118 | Structural ( ) Determination of Isolated Single-Wall Carbon Nanotubes by Resonant Raman Scattering
[24] | Gao B, Zhang Y, Zhang J, Kong J and Liu Z 2008 J. Phys. Chem. C 112 8319 | Systematic Comparison of the Raman Spectra of Metallic and Semiconducting SWNTs
[25] | Bechtel H A, Muller E A, Olmon R L, Martin M C and Raschke M B 2014 Proc. Natl. Acad. Sci. USA 111 7191 | Ultrabroadband infrared nanospectroscopic imaging
[26] | Gerber J A, Berweger S, O'Callahan B T and Raschke M B 2014 Phys. Rev. Lett. 113 055502 | Phase-Resolved Surface Plasmon Interferometry of Graphene
[27] | Shi Z, Hong X, Bechtel H A, Zeng B, Martin M C, Watanabe K, Taniguchi T, Shen Y R and Wang F 2015 Nat. Photon. 9 515 | Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes
[28] | Zhao S, Sheng W, Fanqi W, Wu S, Bakti U I, Tairu L, Lili J, Yudan S, Siqi W and Kenji W 2018 Phys. Rev. Lett. 121 047702 | Correlation of Electron Tunneling and Plasmon Propagation in a Luttinger Liquid
[29] | Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M and Dominguez G 2012 Nature 487 82 | Gate-tuning of graphene plasmons revealed by infrared nano-imaging
[30] | Németh G, Datz D, Tóháti H M, Pekker Á and Kamarás K 2016 Phys. Status Solidi 253 2413 | Scattering near-field optical microscopy on metallic and semiconducting carbon nanotube bundles in the infrared
[31] | Németh G, Datz D, Tóháti H M, Pekker á Otsuka K, Inoue T, Maruyama S and Kamarás K 2017 Phys. Status Solidi B 254 1700433 | Nanoscale Characterization of Individual Horizontally Aligned Single-Walled Carbon Nanotubes
[32] | Huang S, Cai X and Liu J 2003 J. Am. Chem. Soc. 125 5636 | Growth of Millimeter-Long and Horizontally Aligned Single-Walled Carbon Nanotubes on Flat Substrates
[33] | Huang S, Woodson M, Smalley R and Liu J 2004 Nano Lett. 4 1025 | Growth Mechanism of Oriented Long Single Walled Carbon Nanotubes Using “Fast-Heating” Chemical Vapor Deposition Process
[34] | Hong B H, Lee J Y, Beetz T, Zhu Y, Kim P and Kim K S 2005 J. Am. Chem. Soc. 127 15336 | Quasi-Continuous Growth of Ultralong Carbon Nanotube Arrays
[35] | Zhang G, Mann D, Zhang L, Javey A, Li Y, Yenilmez E, Wang Q, McVittie J P, Nishi Y and Gibbons J 2005 Proc. Natl. Acad. Sci. USA 102 16141 | Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen
[36] | Jin Z, Chu H, Wang J, Hong J, Tan W and Li Y 2007 Nano Lett. 7 2073 | Ultralow Feeding Gas Flow Guiding Growth of Large-Scale Horizontally Aligned Single-Walled Carbon Nanotube Arrays
[37] | Zhang R, Xie H, Zhang Y, Zhang Q, Jin Y, Li P, Qian W and Wei F 2013 Carbon 52 232 | The reason for the low density of horizontally aligned ultralong carbon nanotube arrays
[38] | Liu B, Wu F, Gui H, Zheng M and Zhou C 2017 ACS Nano 11 31 | Chirality-Controlled Synthesis and Applications of Single-Wall Carbon Nanotubes
[39] | Li H Y, Ying Z, Lyu B S, Deng A L, Wang L L, Taniguchi T, Watanabe K and Shi Z W 2018 Nano Lett. 18 8011 | Electrode-Free Anodic Oxidation Nanolithography of Low-Dimensional Materials
[40] | Liu K, Deslippe J, Xiao F, Capaz R B, Hong X, Aloni S, Zettl A, Wang W, Bai X and Louie S G 2012 Nat. Nanotechnol. 7 325 | An atlas of carbon nanotube optical transitions
[41] | Liu K, Hong X, Zhou Q, Jin C, Li J, Zhou W, Liu J, Wang E, Zettl A and Wang F 2013 Nat. Nanotechnol. 8 917 | High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices
[42] | Sfeir M Y, Feng W, Limin H, Chia-Chin C, Hone J, O'Brien S P, Heinz T F and Brus L E 2004 Science 306 1540 | Probing Electronic Transitions in Individual Carbon Nanotubes by Rayleigh Scattering