[1] | Rayleigh L 1883 Proc. R. Soc. London Ser. A 14 170 | Investigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density
[2] | Taylor G 1950 Proc. R. Soc. London A 201 192 | The Instability of Liquid Surfaces when Accelerated in a Direction Perpendicular to their Planes. I
[3] | Wang L F et al 2017 Sci. Chin.-Phys. Mech. Astron. 60 055201 | Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions
[4] | Lindl J D et al 2004 Phys. Plasmas 11 339 | The physics basis for ignition using indirect-drive targets on the National Ignition Facility
[5] | Atzeni S et al 2004 The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford: OUP Oxford) |
[6] | Mikaelian K O 1983 Phys. Rev. A 28 1637 | Time evolution of density perturbations in accelerating stratified fluids
[7] | Mikaelian K O 2005 Phys. Fluids 17 094105 | Rayleigh-Taylor and Richtmyer-Meshkov instabilities and mixing in stratified cylindrical shells
[8] | Wang L F et al 2014 Phys. Plasmas 21 122710 | Weakly nonlinear Rayleigh-Taylor instability of a finite-thickness fluid layer
[9] | Guo H Y et al 2017 Chin. Phys. Lett. 34 075201 | Linear Growth of Rayleigh–Taylor Instability of Two Finite-Thickness Fluid Layers
[10] | Waddell J T et al 2001 Phys. Fluids 13 1263 | Experimental study of Rayleigh–Taylor instability: Low Atwood number liquid systems with single-mode initial perturbations
[11] | Wilkinson J P and Jacobs J W 2007 Phys. Fluids 19 124102 | Experimental study of the single-mode three-dimensional Rayleigh-Taylor instability
[12] | Ye W H et al 2002 Phys. Rev. E 65 057401 | Stabilization of ablative Rayleigh-Taylor instability due to change of the Atwood number