[1] | Soref R 2006 IEEE J. Sel. Top. Quantum Electron. 12 1678 | The Past, Present, and Future of Silicon Photonics
[2] | Asghari M and Krishnamoorthy A V 2011 Nat. Photon. 5 268 | Energy-efficient communication
[3] | Miller D A 2000 IEEE J. Sel. Top. Quantum Electron. 6 1312 | Optical interconnects to silicon
[4] | Liang D and Bowers J E 2010 Nat. Photon. 4 511 | Recent progress in lasers on silicon
[5] | Mahajan S 2000 Acta Mater. 48 137 | Defects in semiconductors and their effects on devices
[6] | Kroemer H 1987 J. Cryst. Growth 81 193 | Polar-on-nonpolar epitaxy
[7] | Yang V K, Groenert M, Leitz C W, Pitera A J, Currie M T and Fitzgerald E A 2003 J. Appl. Phys. 93 3859 | Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates
[8] | Wang T, Liu H, Lee A, Pozzi F and Seeds A 2011 Opt. Express 19 11381 | 13-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates
[9] | Lee A, Jiang Q, Tang M, Seeds A and Liu H 2012 Opt. Express 20 22181 | Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities
[10] | Chen S, Liao M, Tang M, Wu J, Martin M, Baron T, Seeds A and Liu H 2017 Opt. Express 25 4632 | Electrically pumped continuous-wave 13 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates
[11] | Liu A Y, Peters J, Huang X, Jung D, Norman J, Lee M L, Gossard A C and Bowers J E 2017 Opt. lett. 42 338 | Electrically pumped continuous-wave 13 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si
[12] | Lee A D, Jiang Q, Tang M, Zhang Y, Seeds A J and Liu H 2013 IEEE J. Sel. Top. Quantum Electron. 19 1901107 | InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si, Ge, and Ge-on-Si Substrates
[13] | Frigeri C, Bietti S, Isella G and Sanguinetti S 2013 Appl. Surf. Sci. 267 86 | Structural characterization of GaAs self-assembled quantum dots grown by Droplet Epitaxy on Ge virtual substrates on Si
[14] | Li Q, Ng K W and Lau K M 2015 Appl. Phys. Lett. 106 072105 | Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon
[15] | Wan Y, Li Q, Liu A Y, Gossard A C, Bowers J E, Hu E L and Lau K M 2016 Opt. Lett. 41 1664 | Optically pumped 13 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon
[16] | Norman J, Kennedy M J, Selvidge J, Li Q, Wan Y, Liu A Y, Callahan P G, Echlin M P, Pollock T M, Lau K M, Gossard A C and Bowers J E 2017 Opt. Express 25 3927 | Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si
[17] | Wei W Q, Wang J H, Zhang B, Zhang J Y, Wang H L, Feng Q, Xu H X, Wang T and Zhang J J 2018 Appl. Phys. Lett. 113 053107 | InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm
[18] | Li J Z, Bai J, Park J S, Adekore B, Fox K, Carroll M and Lochtefeld A 2007 Appl. Phys. Lett. 91 021114 | Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping
[19] | Li J Z, Bai J, Major C, Carroll M, Lochtefeld A and Shellenbarger Z 2008 J. Appl. Phys. 103 106102 | Defect reduction of GaAs/Si epitaxy by aspect ratio trapping
[20] | Wang G, Leys M R, Loo R, Richard O, Bender H, Waldron N, Brammertz G, Dekoster J, Seefeldt M, Caymax M and Heyns M M 2010 Appl. Phys. Lett. 97 121913 | Selective area growth of high quality InP on Si (001) substrates
[21] | Orzali T, Vert A, O'Brien B, Herman J L, Vivekanand S, Hill R J W, Karim Z and Rao S S P 2015 J. Appl. Phys. 118 105307 | GaAs on Si epitaxy by aspect ratio trapping: Analysis and reduction of defects propagating along the trench direction
[22] | Zhang B, Wei W Q, Wang J H, Zhang J Y, Cong H, Feng Q, Wang T and Zhang J J 2019 Opt. Express 27 19348 | 1310 nm InAs quantum-dot microdisk lasers on SOI by hybrid epitaxy