[1] | Cherry S R, Badawi R D and Qi J 2016 Essentials of in vivo Biomedical Imaging (Boca Raton: CRC Press) |
[2] | Jacques S L 2013 Phys. Med. & Biol. 58 R37 | Optical properties of biological tissues: a review
[3] | Gareau D S, Abeytunge S and Rajadhyaksha M 2009 Opt. Lett. 34 3235 | Line-scanning reflectance confocal microscopy of human skin: comparison of full-pupil and divided-pupil configurations
[4] | Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A and Fujimoto J G 1991 Science 254 1178 | Optical coherence tomography
[5] | Sakadžić S, Demirbas U, Mempel T R, Moore A, Ruvinskaya S, Boas D A, Sennaroglu A, Kartner F X and Fujimoto J G 2008 Opt. Express 16 20848 | Multi-photon microscopy with a low-cost and highly efficient Cr:LiCAF laser
[6] | Ntziachristos V 2010 Nat. Methods 7 603 | Going deeper than microscopy: the optical imaging frontier in biology
[7] | Vellekoop I M and Mosk A P 2007 Opt. Lett. 32 2309 | Focusing coherent light through opaque strongly scattering media
[8] | Popoff S M, Lerosey G, Carminati R, Fink M, Boccara A C and Gigan S 2010 Phys. Rev. Lett. 104 100601 | Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media
[9] | Yu L, Xu X, Zhang Z, Feng Q, Zhang B, Ding Y and Liu Q 2019 Chin. Phys. Lett. 36 114203 | Label-Free Microscopic Imaging Based on the Random Matrix Theory in Wavefront Shaping *
[10] | Feng Q, Zhang B, Liu Z, Lin C and Ding Y 2017 Appl. Opt. 56 3240 | Research on intelligent algorithms for amplitude optimization of wavefront shaping
[11] | Yaqoob Z, Psaltis D, Feld M S and Yang C 2008 Nat. Photon. 2 110 | Optical phase conjugation for turbidity suppression in biological samples
[12] | Jang M, Ruan H, Vellekoop I M, Judkewitz B, Chung E and Yang C 2015 Biomed. Opt. Express 6 72 | Relation between speckle decorrelation and optical phase conjugation (OPC)-based turbidity suppression through dynamic scattering media: a study on in vivo mouse skin
[13] | Vellekoop I M and Mosk A P 2008 Opt. Commun. 281 3071 | Phase control algorithms for focusing light through turbid media
[14] | Conkey D B, Brown A N, Caravaca-Aguirre A M and Piestun R 2012 Opt. Express 20 4840 | Genetic algorithm optimization for focusing through turbid media in noisy environments
[15] | Cui M 2011 Opt. Lett. 36 870 | Parallel wavefront optimization method for focusing light through random scattering media
[16] | Vellekoop I M 2015 Opt. Express 23 12189 | Feedback-based wavefront shaping
[17] | Park J, Sun W and Cui M 2015 Proc. Natl. Acad. Sci. USA 112 9236 | Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy
[18] | Yu H, Park J, Lee K R, Yoon J, Kim K D, Lee S and Park Y K 2015 Curr. Appl. Phys. 15 632 | Recent advances in wavefront shaping techniques for biomedical applications
[19] | Cai M, Wang Z, Liang J, Wang Y, Gao X, Li Y, Tu C and Wang H 2017 Appl. Opt. 56 6175 | High-efficiency and flexible generation of vector vortex optical fields by a reflective phase-only spatial light modulator
[20] | Wang J, Huang P, Du J, Guo Y, Luo X and Du C 2008 Chin. Phys. Lett. 25 2908 | Spatial Light Modulator Based on Surface Plasmon Polaritons for Chromatic Display
[21] | Liu X, Zhang J, Wu L and Gan Y 2011 Chin. Phys. B 20 024211 | Fast generation of controllable equal-intensity four beams based on isosceles triangle multilevel phase grating realized by liquid crystal spatial light modulator
[22] | Sun J, Zhang B, Feng Q, He H, Ding Y and Liu Q 2019 Sci. Rep. 9 4328 | Photoacoustic Wavefront Shaping with High Signal to Noise Ratio for Light Focusing Through Scattering Media
[23] | Gu C, Zhang D, Chang Y and Chen S 2015 Opt. Lett. 40 2870 | Digital micromirror device-based ultrafast pulse shaping for femtosecond laser
[24] | Jia Y, Feng Q, Zhang B, Wang W, Lin C and Ding Y 2018 Chin. Phys. Lett. 35 054203 | Superpixel-Based Complex Field Modulation Using a Digital Micromirror Device for Focusing Light through Scattering Media