Molecular states | Asymptotic atomic states | Energy (cm$^{-1}$) | ||
---|---|---|---|---|
MRD-CI | Ref. | Error | ||
1 $^{2}\!{\it\Sigma}$ | N$^{3+}$(1$s^{2}2sp^{2}\,{}^1\!S$) + He$^{+}$(1$s$) | 0 | 0 | 0 |
2 $^{2}\!{\it\Sigma}$, 1 $^{2}\!{\it\Pi}$ | N$^{3+}$(1$s^{2}2s2p$ $^{3}\!P^{\rm o})$ + He$^{+}$(1$s$) | 67137 | 67209 | $-72$ |
3 $^{2}\!{\it\Sigma}$, 2 $^{2}\!{\it\Pi}$ | N$^{2+}$(1$s^{2}2s^{2}2p \,{}^{2}\!P^{\rm o})$ + He$^{2+}$ | 57328 | 56237 | 1091 |
4 $^{2}\!{\it\Sigma}$, 3 $^{2}\!{\it\Pi}$ | N$^{3+}$(1$s^{2}2s2p$ $^{1}\!P^{\rm o})$ + He$^{+}$(1$s$) | 130856 | 130694 | 162 |
5 $^{2}\!{\it\Sigma}$, 4 $^{2}\!{\it\Pi}$ | N$^{2+}$(1$s^{2}2s2p^{2}\, {}^{2}\!D$) + He$^{2+}$ | 158207 | 157268 | 939 |
5 $^{2}\!{\it\Pi}$ | N$^{3+}$(1$s^{2}2p^{2}\,{}^3\!P$) + He$^{+}$(1$s$) | 175183 | 175535 | $-352$ |
6 $^{2}\!{\it\Sigma}$, 6 $^{2}\!{\it\Pi}$ | N$^{3+}$(1$s^{2}2p^{2}\,{}^1\!D$) + He$^{+}$(1$s$) | 188733 | 188883 | $-150$ |
7 $^{2}\!{\it\Sigma}$ | N$^{2+}$(1$s^{2}2s2p^{2}\,{}^2\!S$) + He$^{2+}$ | 188445 | 187241 | 1204 |
7 $^{2}\!{\it\Pi}$ | N$^{2+}$(1$s^{2}2s2p^{2}\,{}^2\!P$) + He$^{2+}$ | 203174 | 202112 | 1062 |
8 $^{2}\!{\it\Sigma}$ | N$^{3+}$(1$s^{2}2p^{2}\,{}^1\!S$) + He$^{+}$(1$s$) | 235637 | 235369 | 268 |
8 $^{2}\!{\it\Pi}$ | N$^{2+}$(1$s^{2}2p^{3}\,{}^2\!D^{\rm o})$ + He$^{2+}$ | 259945 | 259326 | 619 |
9 $^{2}\!{\it\Sigma}$ | N$^{2+}$(1$s^{2}2s^{2}$3$s\,{}^{2}\!S$) + He$^{2+}$ | 278377 | 277539 | 838 |
10 $^{2}\!{\it\Sigma}$, 9 $^{2}\!{\it\Pi}$ | N$^{2+}$(1$s^{2}2p^{3}\,{}^{2}\!P^{\rm o})$ + He$^{2+}$ | 287543 | 286641 | 902 |
11 $^{2}\!{\it\Sigma}$, 10 $^{2}\!{\it\Pi}$ | N$^{2+}$(1$s^{2}2s^{2}3p \,{}^{2}\!P^{\rm o})$ + He$^{2+}$ | 302793 | 301902 | 891 |
12 $^{2}\!{\it\Sigma}$, 11 $^{2}\!{\it\Pi}$ | N$^{2+}$(1$s^{2}2s^{2}3d \,{}^{2}\!D$) + He$^{2+}$ | 324448 | 323475 | 973 |
13 $^{2}\!{\it\Sigma}$, 12 $^{2}\!{\it\Pi}$ | N$^{2+}$(1$s^{2}2s2p(^{3}\!P^{\rm o}$)3$s\,{}^{2}\!P^{\rm o})$ + He$^{2+}$ | 354181 | 353387 | 794 |
13 $^{2}\!{\it\Pi}$ | N$^{2+}$(1$s^{2}2s2p(^{3}\!P^{\rm o}$)3$p \,{}^{2}\!P$) + He$^{2+}$ | 365875 | 365368 | 507 |
14 $^{2}\!{\it\Sigma}$ | N$^{3+}$(1$s^{2}2s3s\,^{3}\!S$) + He$^{+}$(1$s$) | 376807 | 377285 | $-478$ |
15 $^{\mathbf{2}}\!{\it\Sigma}$ | N$^{\mathbf{4+}}$(1${\boldsymbol s}^{\mathbf{2}}2{\boldsymbol s}\,^{\mathbf{2}}\!S$) + He(1${\boldsymbol s}^{\mathbf{2}}$) | 424760 | 426555 | $-1795$ |
[1] | Shimada M et al 2007 Nucl. Fusion 47 S1 | Chapter 1: Overview and summary
[2] | Loarte A et al 2007 Nucl. Fusion 47 S203 | Chapter 4: Power and particle control
[3] | Cravens T E 1997 Geophys. Res. Lett. 24 105 | Solar wind ion composition
[4] | Iwai T, Kaneko Y, Kimura M, Kobayashi N, Ohtani S, Okuno K, Takagi S, Tawara H and Tsurubuchi S 1982 Phys. Rev. A 26 105 | Cross sections for one-electron capture by highly stripped ions of B, C, N, O, F, Ne, and S from He below 1 keV/amu
[5] | Hoekstra R, De Heer F J and Winter H 1987 Nucl. Instrum. Methods Phys. Res. Sect. B 23 104 | Two- and more-electron transitions in slow multicharged ion-He collisions
[6] | Okuno K, Soejima K and Kaneko Y 1991 Nucl. Instrum. Methods Phys. Res. Sect. B 53 387 | Application of mini-EBIS to cross section measurements of single and double electron capture in low energy collisions of C4+, N4+ and O4+ with He
[7] | McLaughlin T K, Tanuma H, Hodgkinson J, McCullough R W and Gilbody H B 1993 J. Phys. B: At. Mol. Opt. Phys. 26 3871 | State-selective electron capture by slow N 4+ ions in collisions with helium
[8] | Ishii K, Itoh A and Okuno K 2004 Phys. Rev. A 70 042716 | Electron-capture cross sections of multiply charged slow ions of carbon, nitrogen, and oxygen in He
[9] | Tergiman Y S and Bacchus-Montabonel M C 2001 Phys. Rev. A 64 042721 | State-selective single and double electron capture in the collision of with He
[10] | Tergiman Y S and Bacchus-Montabonel M C 2001 Adv. Quantum Chem. 39 163 |
[11] | Krebs S and Buenker R J 1995 J. Chem. Phys. 103 5613 | A new table‐direct configuration interaction method for the evaluation of Hamiltonian matrix elements in a basis of linear combinations of spin‐adapted functions
[12] | Buenker R J and Phillips R A 1985 J. Mol. Struct.: THEOCHEM 123 291 | Implementation of the table CI method: Matrix elements between configurations with the same number of open-shells
[13] | Dunning T H 1989 J. Chem. Phys. 90 1007 | Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
[14] | Woon D E and Dunning T H 1994 J. Chem. Phys. 100 2975 | Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties
[15] | Buenker R J and Peyerimhoff S D 1974 Theor. Chim. Acta 35 33 | Individualized configuration selection in CI calculations with subsequent energy extrapolation
[16] | Buenker R J and Peyerimhoff S D 1975 Theor. Chim. Acta 39 217 | Energy extrapolation in CI calculations
[17] | Buenker R J 1986 Int. J. Quantum Chem. 29 435 | Combining perturbation theory techniques with variational CI calculations to study molecular excited states
[18] | Kramida A, Ralchenko Yu 2017 Reader J. NIST ASD Team. NIST At. Spectra Database (ver. 5.5.1) |
[19] | Herrero B, Cooper I L and Dickinson A S 1996 J. Phys. B: At. Mol. Opt. Phys. 29 5583 | Structure and couplings in the quasimolecule
[20] | Zygelman B and Dalgarno A 1986 Phys. Rev. A 33 3853 | Direct charge transfer of in neon
[21] | Kimura M and Lane N F 1989 Adv. At. Mol. Phys. 26 79 |
[22] | Johnson B R 1973 J. Comput. Phys. 13 445 | The multichannel log-derivative method for scattering calculations
[23] | Heil T G, Butler S E and Dalgarno A 1981 Phys. Rev. A 23 1100 | Charge transfer of multiply charged ions at thermal energies
[24] | Liu C H, Qu Y Z, Liu L, Wang J G, Li Y, Liebermann H P, Funke P and Buenker R J 2008 Phys. Rev. A 78 024703 | Charge transfer and excitation in slow proton collisions with sodium
[25] | Liu C H, Liu L, Qu Y Z, Wang J G and Janev R K 2010 Phys. Rev. A 82 022710 | Radiative and nonradiative charge transfer in collisions of and ions with H atoms
[26] | Wang K, Qu Y Z, Liu C H, Liu L, Wu Y, Liebermann H P and Buenker R J 2019 J. Phys. B: At. Mol. Opt. Phys. 52 075202 | The influence of pseudo states on the single-electron capture processes in low-energy collisions of N 5+ with He
[27] | Errea L F, Mendez L and Riera A 1982 J. Phys. B 15 101 | On the choice of translation factors for approximate molecular wavefunctions
[28] | Gargaud M, McCarroll R and Valiron P 1987 J. Phys. B 20 1555 | Influence of rotational coupling on charge transfer in low-energy C 4+ /H collisions
[29] | Bransden B H and McDowell M R C 1992 Charge Exchange and the Theory of Ion-Atom Collisions (Oxford: Clarendon) |
[30] | Errea L F, Harel C, Jouini H, Mendez L, Pons B and Riera A 1994 J. Phys. B: At. Mol. Opt. Phys. 27 3603 | Common translation factor method
[31] | Bacchus-Montabonel M C and Ceyzeriat P 1998 Phys. Rev. A 58 1162 | Ab initio molecular treatment of charge transfer by ions in helium