[1] | Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M L 2007 Rev. Mod. Phys. 79 1217 | Spins in few-electron quantum dots
[2] | Awschalom D D, Bassett L, Dzurak A S, Hu E L and Petta J R 2013 Science 339 1174 | Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors
[3] | Vandersypen L M K, Bluhm H, Clarke J S, Dzurak A S, Ishihara R, Morello A, Reilly D J, Schreiber L R and Veldhorst M 2017 npj Quantum Inf. 3 34 | Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent
[4] | Veldhorst M, Hwang J C C, Yang C H, Leenstra A W, de Ronde B, Dehollain J P, Muhonen J T, Hudson F E, Itoh K M, Morello A and Dzurak A S 2014 Nat. Nanotechnol. 9 981 | An addressable quantum dot qubit with fault-tolerant control-fidelity
[5] | Kawakami E, Jullien T, Scarlino P, Ward D R, Savage D E, Lagally M G, Dobrovitski V V, Friesen M, Coppersmith S N, Eriksson M A and Vandersypen L M K 2016 Proc. Natl. Acad. Sci. USA 113 11738 | Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs
[6] | Takeda K, Kamioka J, Otsuka T, Yoneda J, Nakajima T, Delbecq M R, Amaha S, Allison G, Kodera T, Oda S and Tarucha S 2016 Sci. Adv. 2 e1600694 | Fast spin-orbit qubit in an indium antimonide nanowire
[7] | Yoneda J, Takeda K, Otsuka T, Nakajima T, Delbecq M R, Allison G, Honda T, Kodera T, Oda S, Hoshi Y, Usami N, Itoh K M and Tarucha S 2018 Nat. Nanotechnol. 13 102 | A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%
[8] | Veldhorst M, Yang C H, Hwang J C C, Huang W, Dehollain J P, Muhonen J T, Simmons S, Laucht A, Hudson F E, Itoh K M, Morello A and Dzurak A S 2015 Nature 526 410 | A two-qubit logic gate in silicon
[9] | Zajac D M, Sigillito A J, Russ M, Borjans F, Taylor J M, Burkard G, Petta1 J R 2018 Science 359 439 | Resonantly driven CNOT gate for electron spins
[10] | Watson T F, Philips S G J, Kawakami E, Ward D R, Scarlino P, Veldhorst M, Savage D E, Lagally M G, Friesen M, Coppersmith S N, Eriksson M A and Vandersypen L M K 2018 Nature 555 633 | A programmable two-qubit quantum processor in silicon
[11] | Nichol J M, Orona L A, Harvey S P, Fallahi S, Gardner G C, Manfra M J and Yacoby A 2017 npj Quantum Inf. 3 3 | High-fidelity entangling gate for double-quantum-dot spin qubits
[12] | Xue X, Watson T F, Helsen J, Ward D R, Savage D E, Lagally M G, Coppersmith S N, Eriksson M A, Wehner S and Vandersypen L M K 2019 Phys. Rev. X 9 021011 | Benchmarking Gate Fidelities in a Two-Qubit Device
[13] | Huang W, Yang C H, Chan K W, Tanttu T, Hensen B, Leon R C C, Fogarty M A, Hwang J C C, Hudson F E, Itoh K M, Morello A, Laucht A and Dzurak A S 2019 Nature 569 532 | Fidelity benchmarks for two-qubit gates in silicon
[14] | Barthel C, Kjaergaard M, Medford J, Stopa M, Marcus C M, Hanson M P and Gossard A C 2010 Phys. Rev. B 81 161308 | Fast sensing of double-dot charge arrangement and spin state with a radio-frequency sensor quantum dot
[15] | Frey T, Leek P J, Beck M, Blais A, Ihn T, Ensslin K and Wallraff A 2012 Phys. Rev. Lett. 108 046807 | Dipole Coupling of a Double Quantum Dot to a Microwave Resonator
[16] | Petersson K D, McFaul L W, Schroer M D, Jung M, Taylor J M, Houck A A and Petta J R 2012 Nature 490 380 | Circuit quantum electrodynamics with a spin qubit
[17] | Deng G W, Wei D, Johansson J R, Zhang M L, Li S X, Li H O, Cao G, Xiao M, Tu T, Guo G C, Jiang H W, Nori F and Guo G P 2015 Phys. Rev. Lett. 115 126804 | Charge Number Dependence of the Dephasing Rates of a Graphene Double Quantum Dot in a Circuit QED Architecture
[18] | Mi X, Cady J V, Zajac D M, Deelman P W and Petta J R 2017 Science 355 156 | Strong coupling of a single electron in silicon to a microwave photon
[19] | Samkharadze N, Zheng G, Kalhor N, Brousse D, Sammak A, Mendes U C, Blais A, Scappucci G and Vandersypen L M K 2018 Science 359 1123 | Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent
[20] | Mi X, Benito M, Putz S, Zajac D M, Taylor J M, Burkard G and Petta J R 2018 Nature 555 599 | A coherent spin–photon interface in silicon
[21] | Landig A J, Koski J V, Scarlino P, Mendes U C, Blais A, Reichl C, Wegscheider W, Wallraff A, Ensslin K and Ihn T 2018 Nature 560 179 | Coherent spin–photon coupling using a resonant exchange qubit
[22] | Lin Z R, Guo G P, Tu T, Zhu F Y and Guo G C 2008 Phys. Rev. Lett. 101 230501 | Generation of Quantum-Dot Cluster States with a Superconducting Transmission Line Resonator
[23] | Guo G P, Zhang H, Hu Y, Tu T and Guo G C 2008 Phys. Rev. A 78 020302 | Dispersive coupling between the superconducting transmission line resonator and the double quantum dots
[24] | Wang L, Tu T, Gong B and Guo G C 2015 Phys. Rev. A 92 062346 | Decoherence-protected spin-photon quantum gates in a hybrid semiconductor-superconductor circuit
[25] | Lupascu A, Saito S, Picot T, de Groot P C, Harmans C J P M and Mooij J E 2007 Nat. Phys. 3 119 | Quantum non-demolition measurement of a superconducting two-level system
[26] | Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Science 309 2180 | Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots
[27] | Foletti S, Bluhm H, Mahalu D, Umansky V and Yacoby A 2009 Nat. Phys. 5 903 | Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization
[28] | Wu X, Ward D R, Prance J R, Kim D, Gamble J K, Mohr R T, Shi Z, Savage D E, Lagally M G, Friesen M, Coppersmith S N and Eriksson M A 2014 Proc. Natl. Acad. Sci. USA 111 11938 | Two-axis control of a singlet-triplet qubit with an integrated micromagnet
[29] | Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320 | Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation
[30] | Breuer H P and Petruccione F 2007 Theory of Open Quantum Systems (Oxford: Oxford University Press) |
[31] | Walls D F and Milburn G J 2008 Quantum Optics (Berlin: Springer) |
[32] | Dial O E, Shulman M D, Harvey S P, Bluhm H, Umansky V and Yacoby A 2013 Phys. Rev. Lett. 110 146804 | Charge Noise Spectroscopy Using Coherent Exchange Oscillations in a Singlet-Triplet Qubit
[33] | Chen Y, Lin F L, Liang X and Jiang N Q 2019 Chin. Phys. Lett. 36 070302 | Programmable Quantum Processor with Quantum Dot Qubits