Processing math: 100%

HfX2 (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics

Funds: Supported by the National Key Research and Development Program of China (Grant No. 2017YFB0405302).
  • Received Date: September 09, 2020
  • Published Date: November 30, 2020
  • Two-dimensional (2D) materials and their corresponding van der Waals (vdW) heterostructures are considered as promising candidates for highly efficient solar cell applications. A series of 2D HfX2 (X = Cl, Br, I) monolayers are proposed, via first-principle calculations. The vibrational phonon spectra and molecular dynamics simulation results indicate that HfX2 monolayers possess dynamical and thermodynamical stability. Moreover, their electronic structure shows that their Heyd–Scuseria–Ernzerhof(HSE06)-based band values (1.033–1.475 eV) are suitable as donor systems for excitonic solar cells (XSCs). The material's significant visible-light absorbing capability (105 cm1) and superior power conversion efficiency (20%) are demonstrated by establishing a reasonable type II vdW heterostructure. This suggests the significant potential of HfX2 monolayers as a candidate material for XSCs.
  • Article Text

  • [1]
    Yue G, Deng Z, Wang S et al.. 2019 Chin. Phys. Lett. 36 057201 doi: 10.1088/0256-307X/36/5/057201

    CrossRef Google Scholar

    [2]
    Essig S, Allebé C, Remo T et al.. 2017 Nat. Energy 2 17144 doi: 10.1038/nenergy.2017.144

    CrossRef Google Scholar

    [3]
    Cheng K, Guo Y, Han N et al.. 2018 Appl. Phys. Lett. 112 143902 doi: 10.1063/1.5020618

    CrossRef Google Scholar

    [4]
    Fang J, Zhou Z, Xiao M et al.. 2020 InfoMat 2 291 doi: 10.1002/inf2.12067

    CrossRef Google Scholar

    [5]
    Pospischil A, Furchi M M and Mueller T 2014 Nat. Nanotechnol. 9 257 doi: 10.1038/nnano.2014.14

    CrossRef Google Scholar

    [6]
    Zhou L, Kou L, Sun Y et al.. 2015 Nano Lett. 15 7867 doi: 10.1021/acs.nanolett.5b02617

    CrossRef Google Scholar

    [7]
    Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 doi: 10.1016/0927-02569600008-0

    CrossRef Google Scholar

    [8]
    Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 doi: 10.1103/PhysRevB.54.11169

    CrossRef Google Scholar

    [9]
    Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 doi: 10.1103/PhysRevLett.77.3865

    CrossRef Google Scholar

    [10]
    Klimeš J, Bowler D R and Michaelides A 2010 J. Phys.: Condens. Matter 22 022201 doi: 10.1088/0953-8984/22/2/022201

    CrossRef Google Scholar

    [11]
    Nosé S 1984 J. Chem. Phys. 81 511 doi: 10.1063/1.447334

    CrossRef Google Scholar

    [12]
    Mann S, Rani P, Kumar R et al.. 2015 AIP Conf. Proc. 1675 030035 doi: 10.1063/1.4929251

    CrossRef Google Scholar

    [13]
    Krukau A V, Vydrov O A, Izmaylov A F et al.. 2006 J. Chem. Phys. 125 224106 doi: 10.1063/1.2404663

    CrossRef Google Scholar

    [14]
    Molina-Sánchez A and Wirtz L 2011 Phys. Rev. B 84 155413 doi: 10.1103/PhysRevB.84.155413

    CrossRef Google Scholar

    [15]
    Cahangirov S, Topsakal M, Aktürk E et al.. 2009 Phys. Rev. Lett. 102 236804 doi: 10.1103/PhysRevLett.102.236804

    CrossRef Google Scholar

    [16]
    Lü T Y, Liao X X, Wang H Q et al.. 2012 J. Mater. Chem. 22 10062 doi: 10.1039/c2jm30915g

    CrossRef Google Scholar

    [17]
    Lai K, Yan C L, Gao L Q et al.. 2018 J. Phys. Chem. C 122 7656 doi: 10.1021/acs.jpcc.8b01874

    CrossRef Google Scholar

    [18]
    Zhou L J, Zhang Y F and Wu L M 2013 Nano Lett. 13 5431 doi: 10.1021/nl403010s

    CrossRef Google Scholar

    [19]
    Kaur S, Kumar A, Srivastava S et al.. 2018 J. Phys. Chem. C 122 26032 doi: 10.1021/acs.jpcc.8b08566

    CrossRef Google Scholar

    [20]
    Scharber M C, Mühlbacher D, Koppe M et al.. 2006 Adv. Mater. 18 789 doi: 10.1002/adma.200501717

    CrossRef Google Scholar

    [21]
    Green M A, Emery K, Hishikawa Y et al.. 2015 Prog. Photovoltaics 23 1 doi: 10.1002/pip.2573

    CrossRef Google Scholar

    [22]
    Green M A, Emery K, Hishikawa Y et al.. 2017 Prog. Photovoltaics 25 3 doi: 10.1002/pip.2855

    CrossRef Google Scholar

    [23]
    Zhao J, Li Y, Yang G et al.. 2016 Nat. Energy 1 15027 doi: 10.1038/nenergy.2015.27

    CrossRef Google Scholar

    [24]
    Dai J and Zeng X C 2014 J. Phys. Chem. Lett. 5 1289 doi: 10.1021/jz500409m

    CrossRef Google Scholar

    [25]
    Miao N, Xu B, Bristowe N C et al.. 2017 J. Am. Chem. Soc. 139 11125 doi: 10.1021/jacs.7b05133

    CrossRef Google Scholar

    [26]
    Lu X, Zhao Z, Li K et al.. 2016 RSC Adv. 6 86976 doi: 10.1039/C6RA18534G

    CrossRef Google Scholar

    [27]
    Jiao N, Zhou P, Xue L et al.. 2019 J. Phys.: Condens. Matter 31 075702 doi: 10.1088/1361-648X/aaf74f

    CrossRef Google Scholar

    [28]
    Zhang X, Zhao X, Wu D et al.. 2016 Adv. Sci. 3 1600062 doi: 10.1002/advs.201600062

    CrossRef Google Scholar

Catalog

    Article views (207) PDF downloads (305) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return