[1] | Federman S R, Bernath P F and Müller H S P 2012 Proc. Int. Astron. Union 7 355 | DIVISION XII/COMMISSION 14/WORKING GROUP ON MOLECULAR DATA
[2] | Barklem P S et al. 2011 Astron. & Astrophys. 530 A94 | On inelastic hydrogen atom collisions in stellar atmospheres
[3] | Minniti D et al. 1998 Astrophys. J. 499 L175 | Detection of Lithium in a Main-Sequence Bulge Star Using Keck I as a 15 Meter Diameter Telescope
[4] | Chen Y Q et al. 2001 Astron. & Astrophys. 371 943 | Lithium abundances for 185 main-sequence stars
[5] | Mena E D et al. 2015 Astron. & Astrophys. 576 A69 | Li abundances in F stars: planets, rotation, and Galactic evolution
[6] | Dalgarno A 2005 J. Phys.: Conf. Ser. 4 10 | Molecular processes in the early Universe
[7] | Lin X et al. 2017 Astron. & Astrophys. 598 A75 | Radiative charge transfer and association in slow Li − + H collisions
[8] | Bougleux E and Galli D 1997 Mon. Not. R. Astron. Soc. 288 638 | Lithium hydride in the early Universe and in protogalactic clouds
[9] | Lepp S, Stanci P C and Dalgarno A 2002 J. Phys. B 35 R57 | Atomic and molecular processes in the early Universe
[10] | Nakamura G 1930 Z. Phys. 59 218 | Das Bandenspektrum des Lithiumhydrids
[11] | Crawford F H and Jorgensen T 1935 Phys. Rev. 47 932 | The Band Spectra of the Hydrides of Lithium
[12] | Crawford F H and Jorgensen T 1935 Phys. Rev. 47 358 | The Band Spectra of the Hydrides of Lithium Part I: D
[13] | Velasco R 1957 Can. J. Phys. 35 1204 | ULTRAVIOLET SPECTRA OF LiH AND LiD
[14] | Pearson E F and Gordy W 1969 Phys. Rev. 177 59 | Millimeter-Wave Spectra and Molecular Constants of D and D
[15] | Plummer G M et al. 1984 J. Chem. Phys. 81 4893 | Submillimeter spectra and molecular constants of 6 LiH, 7 LiH, 6 LiD, and 7 LiD
[16] | Plummer G M, Herbst E and de Lucia F C 1984 Astrophys. J. 282 L113 | Laboratory submillimeter transition frequencies of Li-7H and Li-6H
[17] | G M A, Olson W B and Thompson G 1990 J. Mol. Spectrosc. 144 257 | FTS infrared measurements of the rotational and vibrational spectrum of LiH and LiD
[18] | Matsushima F et al. 1994 Jpn. J. Appl. Phys. 33 315 | Far-Infrared Spectroscopy of LiH using a Tunable Far-Infrared Spectrometer *
[19] | Dulick M, Zhang K Q, Guo B and Bernath P F 1998 J. Mol. Spectrosc. 188 14 | Far- and Mid-Infrared Emission Spectroscopy of LiH and LiD
[20] | Lin W C, Chen J J and Luh W T 1997 J. Phys. Chem. A 101 6709 | C 1 Σ + State of 7 LiH
[21] | Huang Y L et al. 2000 J. Chem. Phys. 113 683 | The D 1Σ+ state of 7LiH
[22] | Hsu S K et al. 2002 J. Phys. Chem. A 106 6279 | Spectroscopic Study of the C 1 Σ + State of 6 LiH and 7 LiD
[23] | Jönsson B et al. 1981 J. Chem. Phys. 74 4566 | MCSCF–CI calculations of the ground state potential curves of LiH, Li 2 , and F 2
[24] | Roos B O and Sadlej J A 1982 J. Chem. Phys. 76 5444 | Complete active space (CAS) SCF study of the dipole polarizability function for the X 1 Σ + state of LiH
[25] | Partridge H and Langhoff S R 1981 J. Chem. Phys. 74 2361 | Theoretical treatment of the X 1 Σ + , A 1 Σ + , and B 1 Π states of LiH
[26] | Partridge H et al. 1981 J. Chem. Phys. 75 2299 | Theoretical study of the dipole moment function of the A 1 Σ + state of LiH
[27] | Zemke W T, Way K R and Stwalley W C 1978 J. Chem. Phys. 69 402 | Radiative transition probabilities for the B 1Π–X 1Σ+ and B 1Π–A 1Σ+ bands of 7LiH
[28] | Zemke W T and Stwalley W C 1980 J. Chem. Phys. 73 5584 | Radiative transition probabilities, lifetimes, and dipole moments for all vibrational levels in the X 1 Σ + state of 7 LiH
[29] | Paidarová I et al. 1990 Int. J. Quantum Chem. 38 283 | Ab initio calculations of nuclear quadrupole coupling constants of low-lying rovibrational levels in the X 1 Σ + and a 1 Σ + states of all isotopic species of LiH
[30] | Vidal C R and Stwalley W C 1982 J. Chem. Phys. 77 883 | The A 1 Σ + – X 1 Σ + system of the isotopic lithium hydrides: The molecular constants, potential energy curves, and their adiabatic corrections
[31] | Boutalib A and Gadéa F X 1992 J. Chem. Phys. 97 1144 | Ab initio adiabatic and diabatic potential‐energy curves of the LiH molecule
[32] | Lee B K, Stout J M and Dykstra C E 1997 J. Mol. Struct. 400 57 | Ab initio calculations of lithium hydride
[33] | Diniz L G et al. 2016 J. Mol. Spectrosc. 322 22 | Accurate dipole moment curve and non-adiabatic effects on the high resolution spectroscopic properties of the LiH molecule
[34] | Holka F et al. 2011 J. Chem. Phys. 134 094306 | Accurate ab initio determination of the adiabatic potential energy function and the Born–Oppenheimer breakdown corrections for the electronic ground state of LiH isotopologues
[35] | Coppola C M, Lodi L and Tennyson J 2011 Mon. Not. R. Astron. Soc. 415 487 | Radiative cooling functions for primordial molecules
[36] | Shi Y B, Stancil P C and Wang J G 2013 Astron. & Astrophys. 551 A140 | On the X 1 Σ + rovibrational spectrum of lithium hydride
[37] | Diniz L G, Alijah A and Mohallem J R 2018 Astrophys. J. Suppl. Ser. 235 1 | Where is OH and Does It Trace the Dark Molecular Gas (DMG)?
[38] | Lyu S P et al. 2019 Chin. Phys. Lett. 36 077202 | Pressure-Induced Ionic-Electronic Transition in BiVO 4
[39] | Du J H and Peng L M 2018 Chin. Chem. Lett. 29 747 | Recent progress in investigations of surface structure and properties of solid oxide materials with nuclear magnetic resonance spectroscopy
[40] | Li F, Huang W H and Gong X Q 2018 Chin. Chem. Lett. 29 765 | Unique adsorption behaviors of NO and O2 at hydrogenated anatase TiO2(101)
[41] | Wang K, Wang X X, Qu Y Z, Liu C H et al. 2020 Chin. Phys. Lett. 37 023401 | Single- and Double-Electron Capture Processes in Low-Energy Collisions of N 4+ Ions with He *
[42] | Elkahwagy N et al. 2018 Chin. Phys. Lett. 35 103101 | Theoretical Investigation on the Low-Lying States of LaP Molecule
[43] | Buenker R J and Phillips R A 1985 J. Mol. Struct.: THEOCHEM 123 291 | Implementation of the table CI method: Matrix elements between configurations with the same number of open-shells
[44] | Krebs S and Buenker R J 1995 J. Chem. Phys. 103 5613 | A new table‐direct configuration interaction method for the evaluation of Hamiltonian matrix elements in a basis of linear combinations of spin‐adapted functions
[45] | Dunning T H 1989 J. Chem. Phys. 90 1007 | Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
[46] | Chen J J, Luh W T and Jeung G H 1999 J. Chem. Phys. 110 4402 | Spectroscopic study of the C 1Σ+ state of 7LiH
[47] | Huber K P and Herzberg G 1978 Molecular Spectra and Molecular Structure (New York: Van Nostrand Reinhold) |
[48] | Dulick M et al. 2003 Astrophys. J. 594 651 | Line Intensities and Molecular Opacities of the FeH F 4 Δ i – X 4 Δ i Transition
[49] | Docken K K and Hinze J 1972 J. Chem. Phys. 57 4936 | LiH Properties, Rotation‐Vibrational Analysis, and Transition Moments for X 1Σ+, A 1Σ+, B 1Π, 3Σ+, and 3Π
[50] | Gadéa F X and Leininger T 2006 Theor. Chem. Acc. 116 566 | Accurate Ab Initio Calculations for LiH and its Ions, LiH+ and LiH−
[51] | Stwalley W C and Zemke W T 1993 J. Phys. Chem. Ref. Data 22 87 | Spectroscopy and Structure of the Lithium Hydride Diatomic Molecules and Ions
[52] | Chan Y C et al. 1986 J. Chem. Phys. 85 2436 | Inverted perturbation approach (IPA) potentials and adiabatic corrections of the X 1 Σ + state of the lithium hydrides near the dissociation limits
[53] | Orth F B and Stwalley W C 1979 J. Mol. Spectrosc. 76 17 | New spectroscopic analyses of the A1Σ+-X1Σ+ bands of 7LiH
[54] | Lundsgaard M F V and Rudolph H 1999 J. Chem. Phys. 111 6724 | Vibrationally resolved cross sections for single-photon ionization of LiH
[55] | Minaev B F 1999 Phys. Chem. Chem. Phys. 1 3403 | The singlet oxygen absorption to the upper state of the Schumann–Runge system: the B 3Σu-←a 1Δg and B 3Σu-←b 1Σg+ transitions intensity calculation
[56] | Minaev B F and Minaeva V A 2001 Phys. Chem. Chem. Phys. 3 720 | MCSCF response calculations of the excited states properties of the O2 molecule and a part of its spectrum
[57] | Xu X S et al. 2018 J. Quant. Spectrosc. Radiat. Transfer 206 172 | Molecular opacities of the transitions for the lowest four singlet states of BeH+
[58] | Weck P F et al. 2004 Astrophys. J. 613 567 | Molecular Line Opacity of LiCl in the Mid‐Infrared Spectra of Brown Dwarfs
[59] | Lodders K 1999 Astrophys. J. 519 793 | Alkali Element Chemistry in Cool Dwarf Atmospheres
[60] | Tennyson J and Yurchenko S 2018 Atoms 6 26 | The ExoMol Atlas of Molecular Opacities
[61] | Yadin B et al. 2012 Mon. Not. R. Astron. Soc. 425 34 | ExoMol line lists - I. The rovibrational spectrum of BeH, MgH and CaH in the X 2 Σ + state
[62] | Wong A et al. 2017 Mon. Not. R. Astron. Soc. 470 882 | ExoMol line list – XXI. Nitric Oxide (NO)
[63] | Yurchenko S N et al. 2018 Mon. Not. R. Astron. Soc. 473 5324 | ExoMol line lists XXIV: a new hot line list for silicon monohydride, SiH