[1] | Marciano W J and Pagels H 1978 Phys. Rep. 36 137 | Quantum chromodynamics
[2] | Wilson K G 1974 Phys. Rev. D 10 2445 | Confinement of quarks
[3] | Bali G S et al. 2016 J. High Energy Phys. 2016(02) 070 | Light-cone distribution amplitudes of the baryon octet
[4] | Mezrag C, Segovia J, Chang L and Roberts C D 2018 Phys. Lett. B 783 263 | Parton distribution amplitudes: Revealing correlations within the proton and Roper
[5] | Bali G S et al. 2019 Eur. Phys. J. A 55 116 | Light-cone distribution amplitudes of octet baryons from lattice QCD
[6] | Pagels H 1973 Phys. Rev. D 7 3689 | Goldstone Bosons as Bound States in the Quark-Gluon Model
[7] | Lane K D 1974 Phys. Rev. D 10 2605 | Asymptotic freedom and Goldstone realization of chiral symmetry
[8] | Politzer H D 1976 Nucl. Phys. B 117 397 | Effective quark masses in the chiral limit
[9] | Pagels H 1979 Phys. Rev. D 19 3080 | Dynamical chiral symmetry breaking in quantum chromodynamics
[10] | Delbourgo R and Scadron M D 1979 J. Phys. G 5 1621 | Proof of the Nambu-Goldstone realisation for vector-gluon-quark theories
[11] | Roberts C D and Williams A G 1994 Prog. Part. Nucl. Phys. 33 477 | Dyson-Schwinger equations and their application to hadronic physics
[12] | Munczek H J 1995 Phys. Rev. D 52 4736 | Dynamical chiral symmetry breaking, Goldstone’s theorem, and the consistency of the Schwinger-Dyson and Bethe-Salpeter equations
[13] | Bender A, Roberts C D and von Smekal L 1996 Phys. Lett. B 380 7 | Goldstone theorem and diquark confinement beyond rainbow-ladder approximation
[14] | Ward J C 1950 Phys. Rev. 78 182 | An Identity in Quantum Electrodynamics
[15] | Green H S 1953 Proc. Phys. Soc. A 66 873 | A Pre-Renormalized Quantum Electrodynamics
[16] | Takahashi Y 1957 Nuovo Cimento 6 371 | On the generalized ward identity
[17] | Maris P and Roberts C D 2003 Int. J. Mod. Phys. E 12 297 | Dyson–Schwinger Equations: A Tool for Hadron Physics
[18] | Chang L, Roberts C D and Tandy P C 2011 Chin. J. Phys. 49 955 |
[19] | Chang L, Cloet I C, Cobos-Martinez J J, Roberts C D, Schmidt S M and Tandy P C 2013 Phys. Rev. Lett. 110 132001 | Imaging Dynamical Chiral-Symmetry Breaking: Pion Wave Function on the Light Front
[20] | Chang L, Roberts C D and Schmidt S M 2013 Phys. Lett. B 727 255 | Light front distribution of the chiral condensate
[21] | Qin S X, Roberts C D and Schmidt S M 2014 Phys. Lett. B 733 202 | Ward–Green–Takahashi identities and the axial-vector vertex
[22] | Mezrag C, Chang L, Moutarde H, Roberts C D, Rodríguez-Quintero J and Schmidt S M 2015 Phys. Lett. B 741 190 | Sketching the pion's valence-quark generalised parton distribution
[23] | Raya K, Chang L, Bashir A, Cobos-Martinez J J, Gutiérrez-Guerrero L X, Roberts C D and Tandy P C 2016 Phys. Rev. D 93 074017 | Structure of the neutral pion and its electromagnetic transition form factor
[24] | Horn T and Roberts C D 2016 J. Phys. G 43 073001 | The pion: an enigma within the Standard Model
[25] | Li B L et al. 2016 Phys. Rev. D 93 114033 | Distribution amplitudes of radially-excited and mesons
[26] | Binosi D, Chang L, Qin S X, Papavassiliou J and Roberts C D 2016 Phys. Rev. D 93 096010 | Symmetry preserving truncations of the gap and Bethe-Salpeter equations
[27] | Roberts C D and Schmidt S M 2020 arXiv:2006.08782[hep-ph] | Reflections upon the Emergence of Hadronic Mass
[28] | Qin S X, Chang L, Liu Y X, Roberts C D, Wilson D J 2011 Phys. Rev. C 84 042202(R) | Interaction model for the gap equation
[29] | Qin S X, Chang L, Liu Y X, Roberts C D and Wilson D J 2012 Phys. Rev. C 85 035202 | Investigation of rainbow-ladder truncation for excited and exotic mesons
[30] | Qin S X, Roberts C D and Schmidt S M 2018 Phys. Rev. D 97 114017 | Poincaré-covariant analysis of heavy-quark baryons
[31] | Qin S X, Roberts C D and Schmidt S M 2019 Few-Body Syst. 60 26 | Spectrum of Light- and Heavy-Baryons
[32] | Aguilar A C, Binosi D and Papavassiliou J 2016 Front. Phys. Chin. 11 111203 | The gluon mass generation mechanism: A concise primer
[33] | Cui Z F, Zhang J L, Binosi D, de Soto F, Mezrag C, Papavassiliou J, Roberts C D, Rodríguez-Quintero J, Segovia J and Zafeiropoulos S 2020 Chin. Phys. C 44 083102 | Effective charge from lattice QCD
[34] | Zyla P A et al. 2020 Prog. Theor. Exp. Phys. 2020 083C01 | Review of Particle Physics
[35] | Chang L and Roberts C D 2009 Phys. Rev. Lett. 103 081601 | Sketching the Bethe-Salpeter Kernel
[36] | Chang L, Liu Y X and Roberts C D 2011 Phys. Rev. Lett. 106 072001 | Dressed-Quark Anomalous Magnetic Moments
[37] | Chang L and Roberts C D 2012 Phys. Rev. C 85 052201(R) | Tracing masses of ground-state light-quark mesons
[38] | Williams R, Fischer C S, Heupel W 2016 Phys. Rev. D 93 034026 | Light mesons in QCD and unquenching effects from the 3PI effective action
[39] | Qin S X 2016 Few-Body Syst. 57 1059 | Comments on Formulating Meson Bound-State Equations Beyond Rainbow-Ladder Approximation
[40] | Ding M et al. 2019 Phys. Rev. D 99 014014 | transition form factors
[41] | Binosi D, Chang L, Papavassiliou J, Qin S X and Roberts C D 2017 Phys. Rev. D 95 031501(R) | Natural constraints on the gluon-quark vertex
[42] | Binosi D, Chang L, Papavassiliou J and Roberts C D 2015 Phys. Lett. B 742 183 | Bridging a gap between continuum-QCD and ab initio predictions of hadron observables
[43] | Roberts C D 1996 Nucl. Phys. A 605 475 | Electromagnetic pion form factor and neutral pion decay width
[44] | Maris P and Tandy P C 2000 Phys. Rev. C 62 055204 | π, and electromagnetic form factors
[45] | Volmer J et al. 2001 Phys. Rev. Lett. 86 1713 | Measurement of the Charged Pion Electromagnetic Form Factor
[46] | Maris P and Roberts C D 1997 Phys. Rev. C 56 3369 | - and -meson Bethe-Salpeter amplitudes
[47] | Windisch A 2017 Phys. Rev. C 95 045204 | Analytic properties of the quark propagator from an effective infrared interaction model
[48] | Chang L, Cloet I C, Roberts C D, Schmidt S M and Tandy P C 2013 Phys. Rev. Lett. 111 141802 | Pion Electromagnetic Form Factor at Spacelike Momenta
[49] | Nakanishi N 1969 Prog. Theor. Phys. Suppl. 43 1 | A General Survey of the Theory of the Bethe-Salpeter Equation
[50] | Denisov O et al. Letter of Intent (Draft 2.0): A New QCD Facility at the M2 Beam Line of the CERN SPS. |
[51] | Aguilar A C et al. 2019 Eur. Phys. J. A 55 190 | Pion and kaon structure at the electron-ion collider
[52] | Cao X et al. 2020 Nucl. Tech. 43 020001 |
[53] | Chen X, Guo F K, Roberts C D and Wang R 2020 arXiv:2008.00102[hep-ph] | Selected Science Opportunities for the EicC
[54] | Ding M, Gao F, Chang L, Liu Y X and Roberts C D 2016 Phys. Lett. B 753 330 | Leading-twist parton distribution amplitudes of S -wave heavy-quarkonia
[55] | Raya K, Ding M, Bashir A, Chang L and Roberts C D 2017 Phys. Rev. D 95 074014 | Partonic structure of neutral pseudoscalars via two photon transition form factors
[56] | Gao F, Chang L, Liu Y X, Roberts C D and Tandy P C 2017 Phys. Rev. D 96 034024 | Exposing strangeness: Projections for kaon electromagnetic form factors
[57] | Chen M, Ding M, Chang L and Roberts C D 2018 Phys. Rev. D 98 091505(R) | Mass dependence of pseudoscalar meson elastic form factors
[58] | Schlessinger L and Schwartz C 1966 Phys. Rev. Lett. 16 1173 | Analyticity as a Useful Computation Tool
[59] | Schlessinger L 1968 Phys. Rev. 167 1411 | Use of Analyticity in the Calculation of Nonrelativistic Scattering Amplitudes
[60] | Tripolt R A, Haritan I, Wambach J and Moiseyev N 2017 Phys. Lett. B 774 411 | Threshold energies and poles for hadron physical problems by a model-independent universal algorithm
[61] | Chen C et al. 2019 Phys. Rev. D 99 034013 | Nucleon-to-Roper electromagnetic transition form factors at large
[62] | Binosi D et al. 2019 Phys. Lett. B 790 257 | Distribution amplitudes of heavy-light mesons
[63] | Binosi D and Tripolt R A 2020 Phys. Lett. B 801 135171 | Spectral functions of confined particles
[64] | Xu Y Z et al. 2019 Phys. Rev. D 100 114038 | Elastic electromagnetic form factors of vector mesons
[65] | Yao Z Q, Binosi D, Cui Z F, Roberts C D, Xu S S and Zong H S 2020 Phys. Rev. D 102 014007 | Semileptonic decays of mesons
[66] | Ablikim M et al. 2019 Phys. Rev. Lett. 122 061801 | First Measurement of the Form Factors in and Decays
[67] | Ablikim M et al. 2015 Phys. Rev. D 92 072012 | Study of dynamics of and decays
[68] | Hecht M B, Roberts C D and Schmidt S M 2001 Phys. Rev. C 63 025213 | Valence-quark distributions in the pion
[69] | Ding M et al. 2020 Chin. Phys. C 44 031002 | Drawing insights from pion parton distributions
[70] | Ding M et al. 2020 Phys. Rev. D 101 054014 | Symmetry, symmetry breaking, and pion parton distributions
[71] | Cui Z F, Ding M, Gao F, Raya K, Binosi D, Chang L, Roberts C D, Rodríguez-Quintero J and Schmidt S M 2020 arXiv:2006.14075[hep-ph] | Higgs modulation of emergent mass as revealed in kaon and pion parton distributions
[72] | Cahill R T, Roberts C D and Praschifka J 1989 Aust. J. Phys. 42 129 | Baryon Structure and QCD
[73] | Burden C J, Cahill R T and Praschifka J 1989 Aust. J. Phys. 42 147 | Baryon Structure and QCD: Nucleon Calculations
[74] | Cahill R T 1989 Aust. J. Phys. 42 171 | Hadronisation of QCD
[75] | Reinhardt H 1990 Phys. Lett. B 244 316 | Hadronization of quark flavor dynamics
[76] | Efimov G V, Ivanov M A and Lyubovitskij V E 1990 Z. Phys. C 47 583 | Quark-diquark approximation of the three-quark structure of baryons in the quark confinement model
[77] | Eichmann G, Sanchis-Alepuz H, Williams R, Alkofer R and Fischer C S 2016 Prog. Part. Nucl. Phys. 91 1 | Baryons as relativistic three-quark bound states
[78] | Wang Q W, Qin S X, Roberts C D and Schmidt S M 2018 Phys. Rev. D 98 054019 | Proton tensor charges from a Poincaré-covariant Faddeev equation
[79] | Durr S et al. 2008 Science 322 1224 | Ab Initio Determination of Light Hadron Masses
[80] | Eichmann G 2011 Phys. Rev. D 84 014014 | Nucleon electromagnetic form factors from the covariant Faddeev equation
[81] | Gilfoyle G 2018 EPJ Web Conf. 172 02004 | Future Measurements of the Nucleon Elastic Electromagnetic Form Factors at Jefferson Lab
[82] | Wojtsekhowski B 2020 arXiv:2001.02190 [nucl-ex] | Flavor Decomposition of Nucleon Form Factors
[83] | Kelly J J 2004 Phys. Rev. C 70 068202 | Simple parametrization of nucleon form factors
[84] | Hecht M B, Roberts C D, Oettel M, Thomas A W, Schmidt S M and Tandy P C 2002 Phys. Rev. C 65 055204 | Nucleon mass and pion loops
[85] | Burkert V D and Roberts C D 2019 Rev. Mod. Phys. 91 011003 | Colloquium : Roper resonance: Toward a solution to the fifty year puzzle
[86] | Chen X, Ping J, Roberts C D and Segovia J 2018 Phys. Rev. D 97 094016 | Light-meson masses in an unquenched quark model
[87] | Williams R 2019 Phys. Lett. B 798 134943 | Vector mesons as dynamical resonances in the Bethe–Salpeter framework
[88] | Lu Y, Chen C, Cui Z F, Roberts C D, Schmidt S M, Segovia J and Zong H S 2019 Phys. Rev. D 100 034001 | Transition form factors: ,
[89] | Brodsky S J et al. 2020 Int. J. Mod. Phys. E (in press) |
[90] | Barabanov M Y et al. Diquark Correlations in Hadron Physics: Origin, Impact and Evidence (in progress) |
[91] | Fischer C S 2019 Prog. Part. Nucl. Phys. 105 1 | QCD at finite temperature and chemical potential from Dyson–Schwinger equations
[92] | Gao F and Pawlowski J M 2020 Phys. Rev. D 102 034027 | QCD phase structure from functional methods
[93] | Raya K, Bashir A and Roig P 2020 Phys. Rev. D 101 074021 | Contribution of neutral pseudoscalar mesons to within a Schwinger-Dyson equations approach to QCD
[94] | Eichmann G, Fischer C S and Williams R 2020 Phys. Rev. D 101 054015 | Kaon-box contribution to the anomalous magnetic moment of the muon
[95] | Xu S S et al. 2019 Eur. Phys. J. A 55 113 | New perspective on hybrid mesons
[96] | Souza E V et al. 2020 Eur. Phys. J. A 56 25 | Pseudoscalar glueball mass: a window on three-gluon interactions
[97] | Lucha W, Melikhov D and Sazdjian H 2019 Phys. Rev. D 100 074029 | Tetraquark-adequate QCD sum rules for quark-exchange processes
[98] | Kaptari L P and Kämpfer B 2020 Few-Body Syst. 61 28 | Mass Spectrum of Pseudo-Scalar Glueballs from a Bethe–Salpeter Approach with the Rainbow–Ladder Truncation
[99] | Wallbott P C, Eichmann G and Fischer C S 2020 arXiv:2003.12407[hep-ph] | Disentangling different structures in heavy-light four-quark states
[100] | Huber M Q, Fischer C S and Sanchis-Alepuz H 2020 arXiv:2004.00415[hep-ph] | Spectrum of scalar and pseudoscalar glueballs from functional methods