[1] | Esposito M, Kawai R, Lindenberg K and Van D B C 2010 Phys. Rev. E 81 041106 | Quantum-dot Carnot engine at maximum power
[2] | Esposito M, Kumar N, Lindenberg K and Van D B C 2012 Phys. Rev. E 85 031117 | Stochastically driven single-level quantum dot: A nanoscale finite-time thermodynamic machine and its various operational modes
[3] | Li W, Fu J, Yang Y Y and He J Z 2019 Acta Phys. Sin. 68 220501 (in Chinese) | Quantum dot refrigerator driven by photon
[4] | Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard I W A and Heath J R 2008 Nature 451 168 | Silicon nanowires as efficient thermoelectric materials
[5] | Yang Y Y, Xu S, Li W and He J Z 2020 Phys. Scr. 95 095001 | Optimal performance of three-terminal nanowire heat engine based on one-dimensional ballistic conductors
[6] | Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 12727 | Effect of quantum-well structures on the thermoelectric figure of merit
[7] | Hicks L D, Harman T C and Dresselhaus M S 1993 Appl. Phys. Lett. 63 3230 | Use of quantum‐well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials
[8] | Venkatasubramanian R, Siivola E, Colpittes T and O'Quinn B 2001 Nature 413 597 | Thin-film thermoelectric devices with high room-temperature figures of merit
[9] | Edwards H L, Niu Q and De L A L 1993 Appl. Phys. Lett. 63 1815 | A quantum‐dot refrigerator
[10] | Edwards H L, Niu Q, Georgakis G A and De L A L 1995 Phys. Rev. B 52 5714 | Cryogenic cooling using tunneling structures with sharp energy features
[11] | Jordan A N, Sothmann B, Sánchez R and Büttiker M 2013 Phys. Rev. B 87 075312 | Powerful and efficient energy harvester with resonant-tunneling quantum dots
[12] | Sothmann B, Sánchez R, Jordan A N and Büttiker M 2013 New J. Phys. 15 095021 | Powerful energy harvester based on resonant-tunneling quantum wells
[13] | Lin Z B, Li W, Fu J, Yang Y Y and He J Z 2019 Chin. Phys. Lett. 36 060501 | A Three-Terminal Quantum Well Heat Engine with Heat Leakage
[14] | Lin Z B, Yang Y Y, Li W, Wang J H and He J Z 2020 Phys. Rev. E 101 022117 | Three-terminal refrigerator based on resonant-tunneling quantum wells
[15] | Choi Y and Jordan A N 2015 Physica E 74 465 | Three-terminal heat engine and refrigerator based on superlattices
[16] | Jiang J H, Entin-Wohlman O and Imry Y 2012 Phys. Rev. B 85 075412 | Thermoelectric three-terminal hopping transport through one-dimensional nanosystems
[17] | Jiang J H, Entin-Wohlman O and Imry Y 2013 New J. Phys. 15 075021 | Three-terminal semiconductor junction thermoelectric devices: improving performance
[18] | Su G Z, Pan Y Z, Zhang Y C, Shih T M and Chen J C 2016 Energy 113 723 | An electronic cooling device with multiple energy selective tunnels
[19] | Peng W L, Ye Z L, Zhang X and Chen J C 2018 Energy Convers. Manage. 166 74 | Performance improvement of a four-terminal thermal amplifier with multiple energy selective tunnels
[20] | Qiu S S, Ding Z M, Chen L, Meng F K and Sun F R 2019 Eur. Phys. J. Plus 134 273 | Optimal performance region of energy selective electron cooling devices consisting of three reservoirs
[21] | Ding Z M, Chen L G, Ge Y L and Xie Z H 2019 Mach. Learn.: Sci. Technol. 62 397 | Optimal performance regions of an irreversible energy selective electron heat engine with double resonances
[22] | Shi Z C, Fu J, Qin W F and He J Z 2017 Chin. Phys. Lett. 34 110501 | Thermodynamic Performance of Three-Terminal Hybrid Quantum Dot Thermoelectric Devices *
[23] | Li W, Yang Y Y, Fu J and He J Z 2020 ES Energy & Environ. 7 40 | Thermodynamic Performance and Optimal Analysis of A Multi-Level Quantum Dot Thermal Amplifier
[24] | Shakouri A and Bowers J E 1997 Appl. Phys. Lett. 71 1234 | Heterostructure integrated thermionic coolers
[25] | Mahan G D, Sofo J O and Bartkowiak M 1998 J. Appl. Phys. 83 4683 | Multilayer thermionic refrigerator and generator
[26] | Mahan G D and Woods L M 1998 Phys. Rev. Lett. 80 4016 | Multilayer Thermionic Refrigeration
[27] | Vining C B and Mahan G D 1999 J. Appl. Phys. 86 6852 | The B factor in multilayer thermionic refrigeration
[28] | Ulrich M D, Barnes P A and Vining C B 2001 J. Appl. Phys. 90 1625 | Comparison of solid-state thermionic refrigeration with thermoelectric refrigeration
[29] | Zebarjadi M 2017 Phys. Rev. Appl. 8 014008 | Solid-State Thermionic Power Generators: An Analytical Analysis in the Nonlinear Regime
[30] | Chen C C, Li Z, Shi L and Cronin S B 2015 Nano Res. 8 666 | Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures
[31] | Wang X, Zebarjadi M and Esfarjani K 2016 Nanoscale 8 14695 | First principles calculations of solid-state thermionic transport in layered van der Waals heterostructures
[32] | Liang S J, Liu B, Hu W, Zhou K and Ang L K 2017 Sci. Rep. 7 46211 | Thermionic Energy Conversion Based on Graphene van der Waals Heterostructures
[33] | Wang X, Zebarjadi M and Esfarjani K 2018 Sci. Rep. 8 9303 | High-Performance Solid-State Thermionic Energy Conversion Based on 2D van der Waals Heterostructures: A First-Principles Study
[34] | Humphrey T E, O'Dwyer M F and Linke H 2005 J. Phys. D 38 2051 | Power optimization in thermionic devices
[35] | Vashaee D and Shakouri A 2004 J. Appl. Phys. 95 1233 | Electronic and thermoelectric transport in semiconductor and metallic superlattices
[36] | Luo X G, He J Z, Long K L, Wang J, Liu N and Qiu T 2014 J. Appl. Phys. 115 244306 | A theoretical study on the performances of thermoelectric heat engine and refrigerator with two-dimensional electron reservoirs
[37] | Nakpathomkun N, Xu H Q and Linke H 2010 Phys. Rev. B 82 235428 | Thermoelectric efficiency at maximum power in low-dimensional systems
[38] | Ferry D and Goodnick S M 1999 Transport in Nanostructures (Cambridge: Cambridge University Press) |
[39] | Yuan Y, Wang R, He J Z, Ma Y L and Wang J H 2014 Phys. Rev. E 90 052151 | Coefficient of performance under maximum criterion in a two-level atomic system as a refrigerator
[40] | De T C, Hernández A C and Roco J M M 2012 Phys. Rev. E 85 010104 | Optimal low symmetric dissipation Carnot engines and refrigerators
[41] | De T C, Roco J M M, Hernández A C, Wang Y and Tu Z C 2013 Phys. Rev. E 87 012105 | Low-dissipation heat devices: Unified trade-off optimization and bounds
[42] | Wang Y, Li M, Tu Z C, Hernández A C and Roco J M M 2012 Phys. Rev. E 86 011127 | Coefficient of performance at maximum figure of merit and its bounds for low-dissipation Carnot-like refrigerators