[1] | Haldane F D M 1983 Phys. Rev. Lett. 51 605 | Fractional Quantization of the Hall Effect: A Hierarchy of Incompressible Quantum Fluid States
[2] | Jain J K 2007 Composite Fermions (Cambridge: Cambridge University Press) |
[3] | Moore G and Read N 1991 Nucl. Phys. B 360 362 | Nonabelions in the fractional quantum hall effect
[4] | Bernevig B A and Haldane F D M 2008 Phys. Rev. Lett. 100 246802 | Model Fractional Quantum Hall States and Jack Polynomials
[5] | Laughlin R B 1983 Phys. Rev. Lett. 50 1395 | Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations
[6] | Wen X G and Niu Q 1990 Phys. Rev. B 41 9377 | Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces
[7] | Wen X G 1992 Int. J. Mod. Phys. B 6 1711 | THEORY OF THE EDGE STATES IN FRACTIONAL QUANTUM HALL EFFECTS
[8] | Wen X G 1991 Phys. Rev. B 44 5708 | Edge transport properties of the fractional quantum Hall states and weak-impurity scattering of a one-dimensional charge-density wave
[9] | Li H and Haldane F D M 2008 Phys. Rev. Lett. 101 010504 | Entanglement Spectrum as a Generalization of Entanglement Entropy: Identification of Topological Order in Non-Abelian Fractional Quantum Hall Effect States
[10] | Haldane F D M 2011 Phys. Rev. Lett. 107 116801 | Geometrical Description of the Fractional Quantum Hall Effect
[11] | Qiu R Z, Haldane F D M, Wan X, Yang K and Yi S 2012 Phys. Rev. B 85 115308 | Model anisotropic quantum Hall states
[12] | Yang L P, Li Q and Hu Z X 2018 Chin. Phys. B 27 087306 | Behavior of fractional quantum Hall states in LLL and 1LL with in-plane magnetic field and Landau level mixing: A numerical investigation
[13] | Wang H, Narayanan R, Wan X and Zhang F C 2012 Phys. Rev. B 86 035122 | Fractional quantum Hall states in two-dimensional electron systems with anisotropic interactions
[14] | Sheng D N, Wan X, Rezayi E H, Yang K, Bhatt R N and Haldane F D M 2003 Phys. Rev. Lett. 90 256802 | Disorder-Driven Collapse of the Mobility Gap and Transition to an Insulator in the Fractional Quantum Hall Effect
[15] | Wan X, Sheng D N, Rezayi E H, Yang K, Bhatt R N and Haldane F D M 2005 Phys. Rev. B 72 075325 | Mobility gap in fractional quantum Hall liquids: Effects of disorder and layer thickness
[16] | Liu Z and Bhatt R N 2016 Phys. Rev. Lett. 117 206801 | Quantum Entanglement as a Diagnostic of Phase Transitions in Disordered Fractional Quantum Hall Liquids
[17] | Liu Z and Bhatt R N 2017 Phys. Rev. B 96 115111 | Evolution of quantum entanglement with disorder in fractional quantum Hall liquids
[18] | Zhu W and Sheng D N 2019 Phys. Rev. Lett. 123 056804 | Disorder-Driven Transition in the Fractional Quantum Hall Effect
[19] | Lu M, Jiang N and Wan X 2019 Chin. Phys. Lett. 36 087301 | Quasihole Tunneling in Disordered Fractional Quantum Hall Systems *
[20] | Jiang N, Ke S Y, Ji H X, Wang H, Hu Z X and Wan X 2020 Phys. Rev. B 102 115140 | Principal component analysis of the geometry in anisotropic quantum Hall states
[21] | Goodfellow I, Bengio Y and Courville A 2016 Deep Learning (New York: MIT Press) |
[22] | Pearson K 1901 Philos. Mag. 2 559 | LIII. On lines and planes of closest fit to systems of points in space
[23] | Wang L 2016 Phys. Rev. B 94 195105 | Discovering phase transitions with unsupervised learning
[24] | Wang C and Zhai H 2017 Phys. Rev. B 96 144432 | Machine learning of frustrated classical spin models. I. Principal component analysis
[25] | Wetzel S J 2017 Phys. Rev. E 96 022140 | Unsupervised learning of phase transitions: From principal component analysis to variational autoencoders
[26] | Hu W, Singh R R P and Scalettar R T 2017 Phys. Rev. E 95 062122 | Discovering phases, phase transitions, and crossovers through unsupervised machine learning: A critical examination
[27] | Costa N C, Hu W, Bai Z J, Scalettar R T and Singh R R P 2017 Phys. Rev. B 96 195138 | Principal component analysis for fermionic critical points
[28] | Wang C and Zhai H 2018 Front. Phys. 13 130507 | Machine learning of frustrated classical spin models (II): Kernel principal component analysis
[29] | Yang W Q, Li Q, Yang L P and Hu Z X 2019 Chin. Phys. B 28 067303 | Neutral excitation and bulk gap of fractional quantum Hall liquids in disk geometry
[30] | Banerjee M, Heiblum M, Umansky V, Feldman D E, Oreg Y and Stern A 2018 Nature 559 205 | Observation of half-integer thermal Hall conductance