[1] | Armitage N P, Mele E J and Vishwanath A 2018 Rev. Mod. Phys. 90 015001 | Weyl and Dirac semimetals in three-dimensional solids
[2] | Burkov A A 2016 Nat. Mater. 15 1145 | Topological semimetals
[3] | Yang B J and Nagaosa N 2014 Nat. Commun. 5 4898 | Classification of stable three-dimensional Dirac semimetals with nontrivial topology
[4] | Lv B Q, Xu N, Weng H M, Ma J Z, Richard P et al. 2015 Nat. Phys. 11 724 | Observation of Weyl nodes in TaAs
[5] | Xu S Y, Belopolski I, Alidoust N, Neupane M, Zhang C et al. 2015 Science 349 613 | Discovery of a Weyl fermion semimetal and topological Fermi arcs
[6] | Wang H C and Wang J 2018 Chin. Phys. B 27 107402 | Electron transport in Dirac and Weyl semimetals
[7] | Xu S Y, Alidoust N, Belopolski I, Zhang C, Bian G et al. 2015 Nat. Phys. 11 748 | Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide
[8] | Son D T and Spivak B Z 2013 Phys. Rev. B 88 104412 | Chiral anomaly and classical negative magnetoresistance of Weyl metals
[9] | Burkov A A 2014 Phys. Rev. Lett. 113 187202 | Anomalous Hall Effect in Weyl Metals
[10] | Lu H Z and Sheng S Q 2016 Chin. Phys. B 25 117202 | Weak antilocalization and interaction-induced localization of Dirac and Weyl Fermions in topological insulators and semimetals
[11] | Sun L and Wan S L 2015 Chin. Phys. Lett. 32 057501 | Chiral Current in the Lattice Model of Weyl Semimetal
[12] | Huang Z M, Zhou J and Shen S Q 2017 Phys. Rev. B 96 085201 | Topological responses from chiral anomaly in multi-Weyl semimetals
[13] | Xu G, Weng H, Wang Z, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806 | Chern Semimetal and the Quantized Anomalous Hall Effect in
[14] | Fang C, Gilbert M J, Dai X and Bernevig B A 2012 Phys. Rev. Lett. 108 266802 | Multi-Weyl Topological Semimetals Stabilized by Point Group Symmetry
[15] | Huang S M, Xu S Y, Belopolski I, Lee C C, Chang G et al. 2016 Proc. Natl. Acad. Sci. USA 113 1180 | New type of Weyl semimetal with quadratic double Weyl fermions
[16] | Mai X Y, Zhang D W, Li Z and Zhu S L 2017 Phys. Rev. A 95 063616 | Exploring topological double-Weyl semimetals with cold atoms in optical lattices
[17] | Lepori L, Fulga I C, Trombettoni A and Burrello M 2016 Phys. Rev. A 94 053633 | Double Weyl points and Fermi arcs of topological semimetals in non-Abelian gauge potentials
[18] | Chen Q and Fiete G A 2016 Phys. Rev. B 93 155125 | Thermoelectric transport in double-Weyl semimetals
[19] | Park S, Woo S, Mele E J and Min H 2017 Phys. Rev. B 95 161113(R) | Semiclassical Boltzmann transport theory for multi-Weyl semimetals
[20] | Ahn S, Mele E J and Min H 2017 Phys. Rev. B 95 161112(R) | Optical conductivity of multi-Weyl semimetals
[21] | Mukherjee S P and Carbotte J P 2018 Phys. Rev. B 97 045150 | Doping and tilting on optics in noncentrosymmetric multi-Weyl semimetals
[22] | Gorbar E V, Miransky V A, Shovkovy I A and Sukhachov P O 2017 Phys. Rev. B 96 155138 | Anomalous thermoelectric phenomena in lattice models of multi-Weyl semimetals
[23] | Dai X, Lu H Z, Shen S Q and Yao H 2016 Phys. Rev. B 93 161110(R) | Detecting monopole charge in Weyl semimetals via quantum interference transport
[24] | Roy B, Goswami P and Juričić V 2017 Phys. Rev. B 95 201102(R) | Interacting Weyl fermions: Phases, phase transitions, and global phase diagram
[25] | Lai H H 2015 Phys. Rev. B 91 235131 | Correlation effects in double-Weyl semimetals
[26] | Jian S K and Yao H 2015 Phys. Rev. B 92 045121 | Correlated double-Weyl semimetals with Coulomb interactions: Possible applications to and
[27] | Pixley J H, Goswami Pallab and Das S 2015 Phys. Rev. Lett. 115 076601 | Anderson Localization and the Quantum Phase Diagram of Three Dimensional Disordered Dirac Semimetals
[28] | Fu B, Zhu W, Shi Q, Li Q, Yang J and Zhang Z 2017 Phys. Rev. Lett. 118 146401 | Accurate Determination of the Quasiparticle and Scaling Properties Surrounding the Quantum Critical Point of Disordered Three-Dimensional Dirac Semimetals
[29] | Bera S, Sau J D and Roy B 2016 Phys. Rev. B 93 201302(R) | Dirty Weyl semimetals: Stability, phase transition, and quantum criticality
[30] | Sbierski B, Trescher M, Bergholtz E J and Brouwer P W 2017 Phys. Rev. B 95 115104 | Disordered double Weyl node: Comparison of transport and density of states calculations
[31] | Goswami P and Chakravarty S 2011 Phys. Rev. Lett. 107 196803 | Quantum Criticality between Topological and Band Insulators in Dimensions
[32] | Ning Z, Fu B, Shi Q W, Wang X P 2020 Chin. Phys. B 29 077202 | Effect of weak disorder in multi-Weyl semimetals
[33] | Aleiner I L and Efetov K B 2006 Phys. Rev. Lett. 97 236801 | Effect of Disorder on Transport in Graphene
[34] | Ostrovsky P M, Gornyi I V and Mirlin A D 2006 Phys. Rev. B 74 235443 | Electron transport in disordered graphene
[35] | Dagotto E 1994 Rev. Mod. Phys. 66 763 | Correlated electrons in high-temperature superconductors
[36] | Zhu W, Shi Q W, Wang X R, Wang X P, Yang J L, Chen J and Hou J G 2010 Phys. Rev. B 82 153405 | Evaluation of the Green’s function of disordered graphene
[37] | Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 | The electronic properties of graphene
[38] | Ludwig A W W, Fisher M P A, Shankar R and Grinstein G 1994 Phys. Rev. B 50 7526 | Integer quantum Hall transition: An alternative approach and exact results
[39] | Nersesyan A A, Tsvelik A M and Wenger F 1994 Phys. Rev. Lett. 72 2628 | Disorder effects in two-dimensional d -wave superconductors
[40] | Nersesyan A A, Tsvelik A M and Wenger F 1995 Nucl. Phys. B 438 561 | Disorder effects in two-dimensional Fermi systems with conical spectrum: exact results for the density of states
[41] | Akkermans E and Montambaux G 2007 Mesoscopic Physics of Electrons and Photons (Cambridge: Cambridge University Press) |
[42] | Mahan G D 2000 Many Particle Physics (New York: Kluwer Academic/Plenum) |
[43] | Ioffe A F and Regel A R 1960 Prog. Semicond. 4 237 |
[44] | Imry Y 2002 Introduction to Mesoscopic Physics (Oxford: Oxford University Press) |
[45] | Shon N H and Ando T 1998 J. Phys. Soc. Jpn. 67 2421 | Quantum Transport in Two-Dimensional Graphite System