[1] | Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Marinas B J and Mayes A M 2010 Science and Technology for Water Purification in the Coming Decades in Nanoscience and Technology: A Collection of Reviews from Nature Journals (Singapore: World Scientific) |
[2] | Elimelech M and Phillip W A 2011 Science 333 712 | The Future of Seawater Desalination: Energy, Technology, and the Environment
[3] | Xu G R, Wang S H, Zhao H L, Wu S B, Xu J M, Li L and Liu X Y 2015 J. Membr. Sci. 493 428 | Layer-by-layer (LBL) assembly technology as promising strategy for tailoring pressure-driven desalination membranes
[4] | Loeb S 1962 Adv. Chem. 38 117 | Advances in Chemistry
[5] | Sint K, Wang B and Král P 2008 J. Am. Chem. Soc. 130 16448 | Selective Ion Passage through Functionalized Graphene Nanopores
[6] | Suk M E and Aluru N R 2010 J. Phys. Chem. Lett. 1 1590 | Water Transport through Ultrathin Graphene
[7] | Wang E N and Karnik R 2012 Nat. Nanotechnol. 7 552 | Graphene cleans up water
[8] | Lee K P, Arnot T and Mattia D 2011 J. Membr. Sci. 370 1 | A review of reverse osmosis membrane materials for desalination—Development to date and future potential
[9] | Zhang J, Chen C, Pan J, Zhang L, Liang L, Kong Z, Wang X, Zhang W, Shen J 2020 Phys. Chem. Chem. Phys. 22 7224 | Atomistic insights into the separation mechanism of multilayer graphene membranes for water desalination
[10] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 | Electric Field Effect in Atomically Thin Carbon Films
[11] | Cohentanugi D and Grossman J C 2015 Desalination 366 59 | Nanoporous graphene as a reverse osmosis membrane: Recent insights from theory and simulation
[12] | Mahmoud K A, Mansoor B, Mansour A and Khraisheh M K 2015 Desalination 356 208 | Functional graphene nanosheets: The next generation membranes for water desalination
[13] | Cohen-Tanugi D and Grossman J C 2012 Nano Lett. 12 3602 | Water Desalination across Nanoporous Graphene
[14] | Konatham D, Yu J, Ho T A and Striolo A 2013 Langmuir 29 11884 | Simulation Insights for Graphene-Based Water Desalination Membranes
[15] | Cohentanugi D and Grossman J C 2014 Nano Lett. 14 6171 | Mechanical Strength of Nanoporous Graphene as a Desalination Membrane
[16] | Li T, Tu Q and L S 2019 Desalination 451 182 | Molecular dynamics modeling of nano-porous centrifuge for reverse osmosis desalination
[17] | Ohern S C, Stewart C A, Boutilier M S H, Idrobo J C, Bhaviripudi S, Das S K, Kong J, Laoui T, Atieh M A and Karnik R 2012 ACS Nano 6 10130 | Selective Molecular Transport through Intrinsic Defects in a Single Layer of CVD Graphene
[18] | O'Hern S C, Boutilier M S, Idrobo J C, Song Y, Kong J, Laoui T, Atieh M and Karnik R 2014 Nano Lett. 14 1234 | Selective Ionic Transport through Tunable Subnanometer Pores in Single-Layer Graphene Membranes
[19] | Li W, Yang Y, Weber J K, Zhang G and Zhou R 2016 ACS Nano 10 1829 | Tunable, Strain-Controlled Nanoporous MoS 2 Filter for Water Desalination
[20] | Yang Y, Li W, Zhou H, Zhang X and Zhao M 2016 Sci. Rep. 6 29218 | Tunable C2N Membrane for High Efficient Water Desalination
[21] | Chogani A, Moosavi A and Rahiminejad M 2016 Chem. Prod. Process Model. 11 73 | Numerical Simulation of Salt Water Passing Mechanism Through Nanoporous Single-Layer Graphene Membrane
[22] | Russo C A and Golovchenko J A 2012 Proc. Natl. Acad. Sci. USA 109 5953 | Atom-by-atom nucleation and growth of graphene nanopores
[23] | Boutilier M S H, Sun C, Ohern S C, Au H, Hadjiconstantinou N G and Karnik R 2014 ACS Nano 8 841 | Implications of Permeation through Intrinsic Defects in Graphene on the Design of Defect-Tolerant Membranes for Gas Separation
[24] | Xu G R, Xu J M, Su H C, Liu X Y, Zhao H L, Feng H J and Das R 2019 Desalination 451 18 | Two-dimensional (2D) nanoporous membranes with sub-nanopores in reverse osmosis desalination: Latest developments and future directions
[25] | Huang L, Zhang M, Li C and Shi G 2015 J. Phys. Chem. Lett. 6 2806 | Graphene-Based Membranes for Molecular Separation
[26] | Xue M, Qiu H and Guo W 2013 Nanotechnology 24 505720 | Exceptionally fast water desalination at complete salt rejection by pristine graphyne monolayers
[27] | Cranford S W, Brommer D B and Buehler M J 2012 Nanoscale 4 7797 | Extended graphynes: simple scaling laws for stiffness, strength and fracture
[28] | Abel M, Clair S, Ourdjini O, Mossoyan M and Porte L 2011 J. Am. Chem. Soc. 133 1203 | Single Layer of Polymeric Fe-Phthalocyanine: An Organometallic Sheet on Metal and Thin Insulating Film
[29] | Deng Q, Pan J, Yin X, Wang X, Zhao L, Kang S G, Jimenez-Cruz C A, Zhou R and Li J 2016 Phys. Chem. Chem. Phys. 18 8140 | Toward high permeability, selectivity and controllability of water desalination with FePc nanopores
[30] | Winarto, Takaiwa D, Yamamoto E and Yasuoka K 2016 Phys. Chem. Chem. Phys. 18 33310 | Separation of water–ethanol solutions with carbon nanotubes and electric fields
[31] | Holt J K, Park H G, Wang Y M, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A and Bakajin O 2006 Science 312 1034 | Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes
[32] | Nair R, Wu H, Jayaram P, Grigorieva I and Geim A 2012 Science 335 442 | Unimpeded Permeation of Water Through Helium-Leak-Tight Graphene-Based Membranes
[33] | Kim D W, Choi J, Kim D and Jung H T 2016 J. Mater. Chem. A 4 17773 | Enhanced water permeation based on nanoporous multilayer graphene membranes: the role of pore size and density
[34] | Radha B, Esfandiar A, Wang F C, Rooney A P, Gopinadhan K, Keerthi A, Mishchenko A, Janardanan A, Blake P, Fumagalli L, Lozada-Hidalgo M, Garaj S, Haigh S J, Grigorieva I V, Wu H A and Geim A K 2016 Nature 538 222 | Molecular transport through capillaries made with atomic-scale precision
[35] | Chen L, Shi G, Shen J, Peng B, Zhang B, Wang Y, Bian F, Wang J, Li D and Qian Z 2017 Nature 550 380 | Ion sieving in graphene oxide membranes via cationic control of interlayer spacing
[36] | Hu M and Mi B 2013 Environ. Sci. Technol. 47 3715 | Enabling Graphene Oxide Nanosheets as Water Separation Membranes
[37] | Sun P, Chen Q, Li X, Liu H, Wang K, Zhong M, Wei J, Wu D, Ma R, Sasaki T and Zhu H 2015 NPG Asia Mater. 7 e162 | Highly efficient quasi-static water desalination using monolayer graphene oxide/titania hybrid laminates
[38] | Chen C, Jia L, Li J, Zhang L, Liang L, Chen E, Kong Z, Wang X, Zhang W and Shen J W 2020 Desalination 491 114560 | Understanding the effect of hydroxyl/epoxy group on water desalination through lamellar graphene oxide membranes via molecular dynamics simulation
[39] | King T C, Matthews P D, Glass H, Cormack J A, Holgado J P, Leskes M, Griffin J M, Scherman O A, Barker P D and Grey C P 2015 Angew. Chem. Int. Ed. 54 5919 | Theory and Practice: Bulk Synthesis of C 3 B and its H 2 - and Li-Storage Capacity
[40] | Mortazavi B 2017 Carbon 118 25 | Ultra high stiffness and thermal conductivity of graphene like C3N
[41] | Mortazavi B, Shahrokhi M, Raeisi M, Zhuang X, Pereira L F C and Rabczuk T 2019 Carbon 149 733 | Outstanding strength, optical characteristics and thermal conductivity of graphene-like BC3 and BC6N semiconductors
[42] | Shirazi A, Abadi R, Izadifar M, Alajlan N and Rabczuk T 2018 Comput. Mater. Sci. 147 316 | Mechanical responses of pristine and defective C3N nanosheets studied by molecular dynamics simulations
[43] | Abraham M J, Murtola T, Schulz R, Pall S, Smith J C, Hess B and Lindahl E 2015 SoftwareX 1–2 19 | GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
[44] | Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis J L, Dror R O and Shaw D E 2010 Proteins: Struct. Funct. Bioinf. 78 1950 | Improved side-chain torsion potentials for the Amber ff99SB protein force field
[45] | Deng Y, Wang F, Liu Y, Yang Y, Qu Y, Zhao M, Mu Y and Li W 2020 Nanoscale 12 5217 | Orientational DNA binding and directed transport on nanomaterial heterojunctions
[46] | Berendsen H, Grigera J and Straatsma T 1987 J. Phys. Chem. 91 6269 | The missing term in effective pair potentials
[47] | Hess B, Bekker H, Berendsen H J and Fraaije J G 1997 J. Comput. Chem. 18 1463 | LINCS: A linear constraint solver for molecular simulations
[48] | Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089 | Particle mesh Ewald: An N ⋅log( N ) method for Ewald sums in large systems
[49] | Essmann U, Perera L, Berkowitz M L, Darden T, Lee H and Pedersen L G 1995 J. Chem. Phys. 103 8577 | A smooth particle mesh Ewald method
[50] | Cohen-Tanugi D and Grossman J C 2014 J. Chem. Phys. 141 074704 | Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination
[51] | Yang Y, Mu L, Chen L, Shi G and Fang H 2019 Phys. Chem. Chem. Phys. 21 7623 | Precise control of the interlayer spacing between graphene sheets by hydrated cations
[52] | Liang S, Wang S, Chen L and Fang H 2020 Sep. Purif. Technol. 241 116738 | Controlling interlayer spacings of graphene oxide membranes with cationic for precise sieving of mono-/multi-valent ions
[53] | Li W, Wu W and Li Z 2018 ACS Nano 12 9309 | Controlling Interlayer Spacing of Graphene Oxide Membranes by External Pressure Regulation
[54] | Surwade S P, Smirnov S N, Vlassiouk I V, Unocic R R, Veith G M, Dai S and Mahurin S M 2015 Nat. Nanotechnol. 10 459 | Water desalination using nanoporous single-layer graphene
[55] | Shi Q, Gao H, Zhang Y, Meng Z, Rao D, Su J, Liu Y, Wang Y and Lu R 2018 Carbon 136 21 | Bilayer graphene with ripples for reverse osmosis desalination