[1] | Doherty M W et al. 2013 Phys. Rep. 528 1 | The nitrogen-vacancy colour centre in diamond
[2] | Doherty M W et al. 2014 Phys. Rev. B 90 041201 | Temperature shifts of the resonances of the center in diamond
[3] | Plakhotnik T et al. 2014 Nano Lett. 14 4989 | All-Optical Thermometry and Thermal Properties of the Optically Detected Spin Resonances of the NV – Center in Nanodiamond
[4] | Neumann P et al. 2013 Nano Lett. 13 2738 | High-Precision Nanoscale Temperature Sensing Using Single Defects in Diamond
[5] | Maclaurin D et al. 2012 Phys. Rev. Lett. 108 240403 | Measurable Quantum Geometric Phase from a Rotating Single Spin
[6] | Wood A A et al. 2018 Sci. Adv. 4 eaar7691 | Quantum measurement of a rapidly rotating spin qubit in diamond
[7] | Doherty M W et al. 2014 Phys. Rev. Lett. 112 047601 | Electronic Properties and Metrology Applications of the Diamond Center under Pressure
[8] | Grazioso F et al. 2013 Appl. Phys. Lett. 103 101905 | Measurement of the full stress tensor in a crystal using photoluminescence from point defects: The example of nitrogen vacancy centers in diamond
[9] | Rondin L et al. 2014 Rep. Prog. Phys. 77 056503 | Magnetometry with nitrogen-vacancy defects in diamond
[10] | Glenn D R et al. 2018 Nature 555 351 | High-resolution magnetic resonance spectroscopy using a solid-state spin sensor
[11] | Horsley A et al. 2018 Phys. Rev. Appl. 10 044039 | Microwave Device Characterization Using a Widefield Diamond Microscope
[12] | Dolde F et al. 2011 Nat. Phys. 7 459 | Electric-field sensing using single diamond spins
[13] | Chen X D et al. 2013 Europhys. Lett. 101 67003 | Vector magnetic field sensing by a single nitrogen vacancy center in diamond
[14] | Wang P et al. 2015 Nat. Commun. 6 6631 | High-resolution vector microwave magnetometry based on solid-state spins in diamond
[15] | Kitazawa S et al. 2017 Phys. Rev. A 96 042115 | Vector-magnetic-field sensing via multifrequency control of nitrogen-vacancy centers in diamond
[16] | Schloss J M et al. 2018 Phys. Rev. Appl. 10 034044 | Simultaneous Broadband Vector Magnetometry Using Solid-State Spins
[17] | Doherty M W et al. 2014 New J. Phys. 16 063067 | Measuring the defect structure orientation of a single NV − centre in diamond
[18] | Dolan P R et al. 2014 Opt. Express 22 4379 | Complete determination of the orientation of NV centers with radially polarized beams
[19] | Fukushige K et al. 2020 Appl. Phys. Lett. 116 264002 | Identification of the orientation of a single NV center in a nanodiamond using a three-dimensionally controlled magnetic field
[20] | Blakley S M et al. 2015 Opt. Lett. 40 3727 | Room-temperature magnetic gradiometry with fiber-coupled nitrogen-vacancy centers in diamond
[21] | Dmitriev A K and Vershovskii A K 2015 J. Opt. Soc. Am. B 33 B1 | Concept of a microscale vector magnetic field sensor based on nitrogen-vacancy centers in diamond
[22] | Fedotov I V et al. 2016 Opt. Lett. 41 472 | High-resolution magnetic field imaging with a nitrogen-vacancy diamond sensor integrated with a photonic-crystal fiber
[23] | Dong M M et al. 2018 Appl. Phys. Lett. 113 131105 | A fiber based diamond RF B-field sensor and characterization of a small helical antenna
[24] | Yang B et al. 2019 IEEE Trans. Microwave Theory Tech. 67 2451 | Using Diamond Quantum Magnetometer to Characterize Near-Field Distribution of Patch Antenna
[25] | He W H et al. 2019 Chin. Phys. Lett. 36 127601 | High Resolution Microwave B -Field Imaging Using a Micrometer-Sized Diamond Sensor *
[26] | Chen G et al. 2020 IEEE Sens. J. 20 2440 | Nitrogen-Vacancy Axis Orientation Measurement in Diamond Micro-Crystal for Tunable RF Vectorial Field Sensing
[27] | Fedotov I V et al. 2014 Opt. Lett. 39 6755 | Fiber-optic magnetometry with randomly oriented spins