Generation of Intense Sub-10 fs Pulses at 385 nm

Funds: Supported by the National Key Research and Development Program of China (Grant No. 2019YFA0307703), the Major Research Plan of NSF of China (Grant No. 91850201), and the National Natural Science Foundation of China (Grant Nos. 11974426, 11974425, U1830206 and 11604386).
  • Received Date: August 04, 2020
  • Published Date: October 31, 2020
  • We demonstrated the generation and characterization of 9.7 fs, 180 μJ pulses centered at 385 nm via the frequency doubling of few-cycle near-infrared pulses. Both moderate conversion efficiency (9.5%) and broad phase matching bandwidth (20 nm) were achieved by shaping the spectra of the fundamental pulses. The strong intensity dependence of second-order harmonic generation and well controlled material dispersion ensured the inexistence of satellite pulses, which was confirmed by the self-diffraction frequency resolved optical gating measurement.
  • Article Text

  • [1]
    Falcão-Filho E L, Gkortsas M, Gordon A and Kärtner F X 2009 Opt. Express 17 11217 doi: 10.1364/OE.17.011217

    CrossRef Google Scholar

    [2]
    Falcão-Filho E L, Lai C J, Hong K H, Gkortsas V M, Huang S W, Chen L J and Kärtner F X 2010 Appl. Phys. Lett. 97 061107 doi: 10.1063/1.3475772

    CrossRef Google Scholar

    [3]
    Liu J, Kida Y, Teramoto T and Kobayashi T 2010 Opt. Express 18 4664 doi: 10.1364/OE.18.004664

    CrossRef Google Scholar

    [4]
    Marsh B M, Lamoureux B R and Leone S R 2018 J. Biomol. Struct. Dyn. 5 054502 doi: 10.1063/1.5046776

    CrossRef Google Scholar

    [5]
    Jiang Y J, Gao Y T, Huang P, Zhao K, Xu S Y, Zhu J F, Fang S B, Teng H, Hou X and Wei Z Y 2019 Acta Phys. Sin. 68 214204 in Chinese doi: 10.7498/aps.68.20191164

    CrossRef Google Scholar

    [6]
    Chen Z, Holst B, Kirkwood S E, Sametoglu V, Reid M, Tsui Y Y, Recoules V and Ng A 2013 Phys. Rev. Lett. 110 135001 doi: 10.1103/PhysRevLett.110.135001

    CrossRef Google Scholar

    [7]
    Chen Z, Mo M, Soulard L, Recoules V, Hering P, Tsui Y Y, Glenzer S H and Ng A 2018 Phys. Rev. Lett. 121 075002 doi: 10.1103/PhysRevLett.121.075002

    CrossRef Google Scholar

    [8]
    Chang H T, Zürch M, Kraus P M, Borja L J, Neumark D M and Leone S R 2016 Opt. Lett. 41 5365 doi: 10.1364/OL.41.005365

    CrossRef Google Scholar

    [9]
    Fuji T, Horio T and Suzuki T 2007 Opt. Lett. 32 2481 doi: 10.1364/OL.32.002481

    CrossRef Google Scholar

    [10]
    Kida Y, Liu J, Teramoto T and Kobayashi T 2010 Opt. Lett. 35 1807 doi: 10.1364/OL.35.001807

    CrossRef Google Scholar

    [11]
    Babushkin I and Herrmann J 2008 Opt. Express 16 17774 doi: 10.1364/OE.16.017774

    CrossRef Google Scholar

    [12]
    Dühr O, Nibbering E T J, Korn G, Tempea G and Krausz F 1999 Opt. Lett. 24 34 doi: 10.1364/OL.24.000034

    CrossRef Google Scholar

    [13]
    Liu Y Y, Zhao K, He P, Huang H D, Teng H and Wei Z Y 2017 Chin. Phys. Lett. 34 074204 doi: 10.1088/0256-307X/34/7/074204

    CrossRef Google Scholar

    [14]
    Huang H D, Hu C Y, He H J, Teng H, Li Z Y, Zhao K and Wei Z Y 2019 Chin. Phys. B 28 114203 doi: 10.1088/1674-1056/ab4579

    CrossRef Google Scholar

    [15]
    Liu J, Okamura K, Kida Y, Teramoto T and Kobayashi T 2010 Opt. Express 18 20645 doi: 10.1364/OE.18.020645

    CrossRef Google Scholar

    [16]
    Andreoni A, Bondani M and Potenza M A 1998 Opt. Commun. 154 376 doi: 10.1016/S0030-40189800335-6

    CrossRef Google Scholar

    [17]
    Fürbach A, Le T, Spielmann C and Krausz F 2000 Appl. Phys. B 70 S37 doi: 10.1007/s003400000288

    CrossRef Google Scholar

    [18]
    Huang Y, Zhang C, Xu Y, Li D, Leng Y, Li R and Xu Z 2011 Opt. Lett. 36 781 doi: 10.1364/OL.36.000781

    CrossRef Google Scholar

    [19]
    Huang Y, Song L, Wang D, Li Y, Li C, Xu Y, Leng Y, Li R and Xu Z 2011 Opt. Lett. 36 4785 doi: 10.1364/OL.36.004785

    CrossRef Google Scholar

    [20]
    Gallmann L, Steinmeyer G, Imeshev G, Meyn J P, Fejer M M and Keller U 2002 Appl. Phys. B 74 237 doi: 10.1007/s003400200791

    CrossRef Google Scholar

    [21]
    Martinez O 1989 IEEE J. Quantum Electron. 25 2464 doi: 10.1109/3.40630

    CrossRef Google Scholar

    [22]
    Zhou X, Kanai T, Yoshitomi D, Sekikawa T and Watanabe S 2005 Appl. Phys. B 81 13 doi: 10.1007/s00340-005-1878-2

    CrossRef Google Scholar

    [23]
    Kanai T, Zhou X, Liu T, Kosuge A, Sekikawa T and Watanabe S 2004 Opt. Lett. 29 2929 doi: 10.1364/OL.29.002929

    CrossRef Google Scholar

    [24]
    Träger F 2012 Springer Handbook of Lasers and Optics Berlin: Springer

    Google Scholar

    [25]
    Trebino R 2000 Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses Boston: Springer

    Google Scholar

    [26]
    Song J J, Meng X H, Wang Z H, Wang X Z, Tian W L, Zhu J F, Fang S B, Teng H and Wei Z Y 2019 Chin. Phys. Lett. 36 124206 doi: 10.1088/0256-307X/36/12/124206

    CrossRef Google Scholar

    [27]
    Park J, Lee J H and Nam C H 2009 Opt. Lett. 34 2342 doi: 10.1364/OL.34.002342

    CrossRef Google Scholar

    [28]
    Tournois P 1997 Opt. Commun. 140 245 doi: 10.1016/S0030-40189700153-3

    CrossRef Google Scholar

Catalog

    Article views (450) PDF downloads (494) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return