[1] | Burbidge E M, Burbidge G R, Fowler W A and Hoyle F 1957 Rev. Mod. Phys. 29 547 | Synthesis of the Elements in Stars
[2] | Schatz H, Aprahamian A, Görres J et al. 1998 Phys. Rep. 294 167 | rp-process nucleosynthesis at extreme temperature and density conditions
[3] | Arnould M, Goriely S and Takahashi K 2007 Phys. Rep. 450 97 | The r-process of stellar nucleosynthesis: Astrophysics and nuclear physics achievements and mysteries
[4] | Käppeler F, Gallino R, Bisterzo S and Aoki W 2011 Rev. Mod. Phys. 83 157 | The process: Nuclear physics, stellar models, and observations
[5] | Chen J, Keane D, Ma Y G, Tang A and Xu Z 2018 Phys. Rep. 760 1 | Antinuclei in heavy-ion collisions
[6] | Ji A P, Frebel A, Chiti A and Simon J D 2016 Nature 531 610 | R-process enrichment from a single event in an ancient dwarf galaxy
[7] | Pian E, Avanzo P D, Benetti S 2017 Nature 551 67 | Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger
[8] | Fynbo H, Diget C A, Bergmann U C, Borge M J G et al. (ISOLDE Collaboration) 2005 Nature 433 136 | Revised rates for the stellar triple-α process from measurement of 12C nuclear resonances
[9] | An Z D, Chen Z P, Ma Y G, Yu J K et al. 2015 Phys. Rev. C 92 045802 | Astrophysical factor of the reaction calculated with reduced theory
[10] | Pais H, Gulminelli F, Providencia C and Röpke G 2018 Nucl. Sci. Tech. 29 181 | Light and heavy clusters in warm stellar matter
[11] | Tang X D, Ma S B, Fang X, Bucher B, Alongi A, Cahillane C and Tan W P 2019 Nucl. Sci. Tech. 30 126 | An efficient method for mapping the $${}^{12}\hbox {C}+{}^{12}\hbox {C}$$ molecular resonances at low energies
[12] | Ma S B, Zhang L Y and Hu J 2019 Nucl. Sci. Tech. 30 141 | Stellar reaction rate of 55Ni(p, γ)56Cu in Type I X-ray bursts
[13] | Li W J, Ma Y G, Zhang G Q, Deng X G et al. 2019 Nucl. Sci. Tech. 30 180 | Yield ratio of neutrons to protons in $$^{12}$$12C(d,n)$$^{13}$$13N and $$^{12}$$12C(d,p)$$^{13}$$13C from 0.6 to 3 MeV
[14] | Ding W B, Yu Z, Xu Y, Liu C J and Bao T 2019 Chin. Phys. Lett. 36 049701 | Neutrino Emission and Cooling of Dark-Matter-Admixed Neutron Stars
[15] | Jiang Y, Lou J L, Ye Y L, Pang D Y et al. 2018 Chin. Phys. Lett. 35 082501 | A New Measurement of 11 Be( p , d ) Transfer Reaction
[16] | Hotokezaka K, Piran T and Paul M 2015 Nat. Phys. 11 1042 | Short-lived 244Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis
[17] | Kienle P, Faestermann T, Friese J, Korner H J et al. 2001 Prog. Part. Nucl. Phys. 46 73 | Synthesis and halflives of heavy nuclei relevant for the rp-process
[18] | Erler J, Birge N, Kortelainen M, Nazarewicz W, Olsen E, Perhac A M and Stoitsov M 2012 Nature 486 509 | The limits of the nuclear landscape
[19] | Wang R and Chen L W 2015 Phys. Rev. C 92 031303(R) | Positioning the neutron drip line and the r-process paths in the nuclear landscape
[20] | Spergel D N, Verde L, Peiris H V, Komatsu E, Nolta M R et al. 2003 Astrophys. J. Suppl. Ser. 148 175 | First‐Year Wilkinson Microwave Anisotropy Probe ( WMAP ) Observations: Determination of Cosmological Parameters
[21] | SDSS Collaboration, website: http://www.sdss.org/ |
[22] | Serpico P D, Esposito S, Iocco F, Mangano G, Miele G and Pisanti O 2004 J. Cosmol. Astropart. Phys. 2004(12) 010 | Nuclear reaction network for primordial nucleosynthesis: a detailed analysis of rates, uncertainties and light nuclei yields
[23] | Guo H R, Han Y L and Cai C H 2019 Nucl. Sci. Tech. 30 13 | Theoretical calculation and evaluation of n + 240,242,244Pu reactions
[24] | Baldik R and Yilmaz A 2018 Nucl. Sci. Tech. 29 156 | A study on the excitation functions of 60,62Ni(α,n), 60,61Ni(α,2n), 58,64Ni(α,p), natNi(α,x) reactions
[25] | Yalcin C 2017 Nucl. Sci. Tech. 28 113 | The cross section calculation of 112Sn(α,γ)116Te reaction with different nuclear models at the astrophysical energy range
[26] | Best A, Pantaleo F R, Boeltzig A, Imbriani G, Aliotta M et al. 2019 Phys. Lett. B 797 134900 | Cross section of the reaction 18O(p,γ)19F at astrophysical energies: The 90 keV resonance and the direct capture component
[27] | Marcucci L E, Mangano G, Kievsky A and Viviani M 2016 Phys. Rev. Lett. 116 102501 | Implication of the Proton-Deuteron Radiative Capture for Big Bang Nucleosynthesis
[28] | Bennett M B, Wrede C and Brown B A 2016 Phys. Rev. Lett. 116 102502 | Isospin Mixing Reveals Resonance Influencing Nova Nucleosynthesis
[29] | Huang B S, Ma Y G and He W B 2017 Phys. Rev. C 95 034606 | Photonuclear reaction as a probe for -clustering nuclei in the quasi-deuteron region
[30] | Giuliani S A, Matheson Z, Nazarewicz W et al. 2019 Rev. Mod. Phys. 91 011001 | Colloquium : Superheavy elements: Oganesson and beyond
[31] | Oganessian Yu Ts, Sh F, Bailey P D, Bennett M E et al. 2010 Phys. Rev. Lett. 104 142502 | Synthesis of a New Element with Atomic Number
[32] | Yu X B, Zhu L, Wu Z H, Li F, Su J and Guo C C 2018 Nucl. Sci. Tech. 29 154 | Predictions for production of superheavy nuclei with Z = 105–112 in hot fusion reactions
[33] | Naderi D and Alavi S A 2018 Nucl. Sci. Tech. 29 161 | Influence of the shell effects on evaporation residue cross section of superheavy nuclei
[34] | Boilley D, Cauchois B, Lü H, Marchix A, Abe Y and Shen C 2018 Nucl. Sci. Tech. 29 172 | How accurately can we predict synthesis cross sections of superheavy elements?
[35] | Kasen D, Metzger B, Barnes J, Quataert E and Ramirez-Ruiz E 2017 Nature 551 80 | Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event
[36] | Elhatisari S, Lee D, Rupak G, Epelbaum E, Krebs H, Lähde T A, Luu T and Meißner U G 2015 Nature 528 111 | Ab initio alpha–alpha scattering
[37] | Epelbaum E, Krebs H, Lee D and Meißner U G 2011 Phys. Rev. Lett. 106 192501 | Ab Initio Calculation of the Hoyle State
[38] | He W B, Ma Y G, Cao X G, Cai X Z and Zhang G Q 2014 Phys. Rev. Lett. 113 032506 | Giant Dipole Resonance as a Fingerprint of Clustering Configurations in and
[39] | Liu Y and Ye Y L 2018 Nucl. Sci. Tech. 29 184 | Nuclear clustering in light neutron-rich nuclei
[40] | Zhang S, Wang J C, Bonasera A, Huang M R et al. 2019 Chin. Phys. C 43 064102 | Triple α -particle resonances in the decay of hot nuclear systems
[41] | Ma Y G, Fang D Q, Sun X Y, Zhou P et al. 2015 Phys. Lett. B 743 306 | Different mechanism of two-proton emission from proton-rich nuclei 23Al and 22Mg
[42] | Li Z H, Li Y J, Su J, Yan S Q, Wang Y B, Guo B, Nan D et al. 2019 Sci. Chin. Phys. Mech. Astron. 62 32021 | Extracting spectroscopic factors from elastic transfer reactions
[43] | Jiang W, Ye Y, Li Z H, Lin C J et al. 2017 Sci. Chin. Phys. Mech. Astron. 60 062011 | High-lying excited states in 10Be from the 9Be(9Be,10Be)8Be reaction
[44] | Yun X, Pang D Y, Xu Y P, Zhang Z, Xu R R, Ma Z Y and Yuan C X 2020 Sci. Chin. Phys. Mech. Astron. 63 222011 | What kind of optical model potentials should be used for deuteron stripping reactions?
[45] | Wei L, Lou J L, Ye Y L and Pang D Y 2020 Nucl. Sci. Tech. 31 20 | Experimental study of intruder components in light neutron-rich nuclei via single-nucleon transfer reaction
[46] | Wang Y T, Fang D Q, Xu X X, Sun L J, Wang K et al. 2018 Nucl. Sci. Tech. 29 98 | Implantation-decay method to study the $$\beta $$ β -delayed charged particle decay
[47] | Wu D, Bai C L, Sagawa H, Song Z Q and Zhang H Q 2020 Nucl. Sci. Tech. 31 14 | Contributions of optimized tensor interactions on the binding energies of nuclei
[48] | Benzaid D, Bentridi S, Kerraci A and Amrani N 2020 Nucl. Sci. Tech. 31 9 | Bethe–Weizsäcker semiempirical mass formula coefficients 2019 update based on AME2016
[49] | Liu P, Chen J, Keane D, Xu Z and Ma Y G 2019 Chin. Phys. C 43 124001 | Recalibration of the binding energy of hypernuclei measured in emulsion experiments and its implications
[50] | Martin D, Arcones A, Nazarewicz W and Olsen E 2016 Phys. Rev. Lett. 116 121101 | Impact of Nuclear Mass Uncertainties on the Process
[51] | Block M, Ackermann D, Blaum K, Droese C, Dworschak M et al. 2010 Nature 463 785 | Direct mass measurements above uranium bridge the gap to the island of stability
[52] | Tu X L, Xu H S, Wang M, Zhang Y H et al. 2011 Phys. Rev. Lett. 106 112501 | Direct Mass Measurements of Short-Lived Nuclides , , , and and Their Impact on Nucleosynthesis in the Process
[53] | Cyburt R H, Amthor A M, Ferguson R, Meisel Z, Smith K et al. 2010 Astrophys. J. Suppl. Ser. 189 240 | THE JINA REACLIB DATABASE: ITS RECENT UPDATES AND IMPACT ON TYPE-I X-RAY BURSTS
[54] | Angulo C, Arnould M, Rayet M, Descouvemont P et al. 1999 Nucl. Phys. A 656 3 | A compilation of charged-particle induced thermonuclear reaction rates
[55] | Xu Y, Takahashi K, Goriely S, Arnould M, Ohta M and Utsunomiya H 2013 Nucl. Phys. A 918 61 | NACRE II: an update of the NACRE compilation of charged-particle-induced thermonuclear reaction rates for nuclei with mass number A<16
[56] | Barabási A L and Albert R 1999 Science 286 509 | Emergence of Scaling in Random Networks
[57] | Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175 | Complex networks: Structure and dynamics
[58] | Costa L D, Oliveira O N, Travieso G, Rodrigues F A et al. 2011 Adv. Phys. 60 329 | Analyzing and modeling real-world phenomena with complex networks: a survey of applications
[59] | Barabási A L 2016 Network Science (Cambridge: Cambridge University Press) |
[60] | Watts D J and Strogatz S H 1998 Nature 393 440 | Collective dynamics of ‘small-world’ networks
[61] | Jolley C C and Douglas T 2010 Astrophys. J. 722 1921 | A NETWORK-THEORETICAL APPROACH TO UNDERSTANDING INTERSTELLAR CHEMISTRY
[62] | Jolley C and Douglas T 2012 Astrobiology 12 29 | Topological Biosignatures: Large-Scale Structure of Chemical Networks from Biology and Astrochemistry
[63] | Han D D, Liu J G, Ma Y G, Cai X Z and Shen W Q 2004 Chin. Phys. Lett. 21 1855 | Scale-Free Download Network for Publications
[64] | Han D D, Liu J G and Ma Y G 2008 Chin. Phys. Lett. 25 765 | Fluctuation of the Download Network
[65] | Qian J H, Han D D and Ma Y G 2012 Europhys. Lett. 100 48006 | Criticality and continuity of explosive site percolation in random networks
[66] | Qian J H, Chen Q, Han D D, Ma Y G and Shen W Q 2014 Phys. Rev. E 89 062808 | Origin of Gibrat law in Internet: Asymmetric distribution of the correlation
[67] | Zhu L, Ma Y G, Chen Q and Han D D 2016 Sci. Rep. 6 31882 | Multilayer Network Analysis of Nuclear Reactions
[68] | Guo B, Li Z H, Bai X X, Liu W P, Shu, N C and Chen Y S 2006 Phys. Rev. C 73 048801 | Determination of the astrophysical ( ) reaction rate from the asymptotic normalization coefficients of → + n
[69] | Thomas R and Thielemann F K 2000 At. Data Nucl. Data Tables 75 1 | Astrophysical Reaction Rates From Statistical Model Calculations
[70] | Rauscher T and Thielemann F K 2001 At. Data Nucl. Data Tables 79 47 | TABLES OF NUCLEAR CROSS SECTIONS AND REACTION RATES: AN ADDENDUM TO THE PAPER “ASTROPHYSICAL REACTION RATES FROM STATISTICAL MODEL CALCULATIONS”
[71] | Liu H L, Han D D, Ma Y G and Zhu L 2020 Sci. Chin. Phys. Mech. Astron. 63 112062 | Network structure of thermonuclear reactions in nuclear landscape
[72] | Bertulani C A 2020 Sci. Chin. Phys. Mech. Astron. 63 112063 | Topology of nuclear reaction networks of interest for astrophysics
[73] | Long G L 2020 Sci. Chin. Phys. Mech. Astron. 63 112061 | A new perspective on thermonuclear reactions
[74] | Austin S M, West C and Heger A 2014 Phys. Rev. Lett. 112 111101 | Effective Helium Burning Rates and the Production of the Neutrino Nuclei
[75] | Ferraro F, Takács M P, Piatti D, Cavanna F, Aliotta M et al. 2018 Phys. Rev. Lett. 121 172701 | Direct Capture Cross Section and the and 105 keV Resonances in the Reaction
[76] | Bodansky D, Clayton D D and Fowler W A 1968 Phys. Rev. Lett. 20 161 | Nucleosynthesis During Silicon Burning