[1] | Green M A, Hishikawa Y, Dunlop E D et al. 2018 Prog. Photovoltaics 26 427 | Solar cell efficiency tables (version 52)
[2] | Jackson P, Wuerz R, Hariskos D et al. 2016 Phys. Status Solidi RRL 10 583 | Effects of heavy alkali elements in Cu(In,Ga)Se 2 solar cells with efficiencies up to 22.6%
[3] | Liu X, Chen J, Luo Met et al. 2014 ACS Appl. Mater. & Interfaces 6 10687 | Thermal Evaporation and Characterization of Sb 2 Se 3 Thin Film for Substrate Sb 2 Se 3 /CdS Solar Cells
[4] | Chen C, Li W, Zhou Y et al. 2015 Appl. Phys. Lett. 107 043905 | Optical properties of amorphous and polycrystalline Sb 2 Se 3 thin films prepared by thermal evaporation
[5] | Zhou Y, Leng M, Xia Z et al. 2014 Adv. Energy Mater. 4 1301846 | Solution-Processed Antimony Selenide Heterojunction Solar Cells
[6] | Voutsas G P, Papazoglou A G, Rentzeperis P J and Siapkas D 1985 Z. Kristallogr. 171 261 | The crystal structure of antimony selenide, Sb2Se3
[7] | Luo M, Leng M, Liu X et al. 2014 Appl. Phys. Lett. 104 173904 | Thermal evaporation and characterization of superstrate CdS/Sb 2 Se 3 solar cells
[8] | Zhou Y, Wang L, Chen S et al. 2015 Nat. Photon. 9 409 | Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries
[9] | Wen X, Chen C, Lu S et al. 2018 Nat. Commun. 9 2179 | Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency
[10] | Kondrotas R, Zhang J, Wang C and Tang J 2019 Sol. Energy Mater. Sol. Cells 199 16 | Growth mechanism of Sb2Se3 thin films for photovoltaic application by vapor transport deposition
[11] | Liang G X, Zhang X H, Ma H L et al. 2017 Sol. Energy Mater. Sol. Cells 160 257 | Facile preparation and enhanced photoelectrical performance of Sb2Se3 nano-rods by magnetron sputtering deposition
[12] | Liang G X, Zheng Z H, Fan P et al. 2018 Sol. Energy Mater. Sol. Cells 174 263 | Thermally induced structural evolution and performance of Sb2Se3 films and nanorods prepared by an easy sputtering method
[13] | Hutter O S, Phillips L J, Durose K and Major J D 2018 Sol. Energy Mater. Sol. Cells 188 177 | 6.6% efficient antimony selenide solar cells using grain structure control and an organic contact layer
[14] | Li D B, Yin X, Grice C R et al. 2018 Nano Energy 49 346 | Stable and efficient CdS/Sb2Se3 solar cells prepared by scalable close space sublimation
[15] | Ngo T T, Chavhan S, Kosta I et al. 2014 ACS Appl. Mater. & Interfaces 6 2836 | Electrodeposition of Antimony Selenide Thin Films and Application in Semiconductor Sensitized Solar Cells
[16] | Choi Y C and Il S 2015 Adv. Funct. Mater. 25 2892 | Efficient Sb 2 S 3 -Sensitized Solar Cells Via Single-Step Deposition of Sb 2 S 3 Using S/Sb-Ratio-Controlled SbCl 3 -Thiourea Complex Solution
[17] | Choi Y C, Lee D U, Noh J H, Kim E K and Il S 2014 Adv. Funct. Mater. 24 3587 | Highly Improved Sb 2 S 3 Sensitized-Inorganic-Organic Heterojunction Solar Cells and Quantification of Traps by Deep-Level Transient Spectroscopy
[18] | Choi Y C, Lee Y H, Im S H et al. 2014 Adv. Funct. Mater. 4 1301680 | Efficient Inorganic-Organic Heterojunction Solar Cells Employing Sb 2 (S x /Se 1- x ) 3 Graded-Composition Sensitizers
[19] | Wang W, Wang X, Chen G et al. 2018 Sol. RRL 2 1800208 | Promising Sb 2 (S,Se) 3 Solar Cells with High Open Voltage by Application of a TiO 2 /CdS Double Buffer Layer
[20] | Shi X, Zhang X, Tian Y, Shen C, Wang C and Gao H J 2012 Appl. Surf. Sci. 258 2169 | Electrodeposition of Sb2Se3 on indium-doped tin oxides substrate: Nucleation and growth
[21] | Tang R, Wang X, Lian W et al. 2020 Nat. Energy 5 587 | Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency
[22] | Messina S, Nair M T S and Nair P K 2009 J. Electrochem. Soc. 156 H327 | Antimony Selenide Absorber Thin Films in All-Chemically Deposited Solar Cells
[23] | Leng M, Luo M, Chen C, Qin S et al. 2014 Appl. Phys. Lett. 105 083905 | Selenization of Sb 2 Se 3 absorber layer: An efficient step to improve device performance of CdS/Sb 2 Se 3 solar cells
[24] | Li Z, Liang X, Li G, Liu H et al. 2019 Nat. Commun. 10 125 | 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells
[25] | Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510 | Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells
[26] | Zhang L, Li Y, Li C et al. 2017 ACS Nano 11 12753 | Scalable Low-Band-Gap Sb 2 Se 3 Thin-Film Photocathodes for Efficient Visible–Near-Infrared Solar Hydrogen Evolution
[27] | Polman A, Knight M, Garnett E C, Ehrler B and Sinke W C 2016 Science 352 aad4424 | Photovoltaic materials: Present efficiencies and future challenges
[28] | Li G, Li Z, Liang X et al. 2019 ACS Appl. Mater. & Interfaces 11 828 | Improvement in Sb 2 Se 3 Solar Cell Efficiency through Band Alignment Engineering at the Buffer/Absorber Interface
[29] | Wu C, Jiang C, Wang X et al. 2019 ACS Appl. Mater. & Interfaces 11 3207 | Interfacial Engineering by Indium-Doped CdS for High Efficiency Solution Processed Sb 2 (S 1– x Se x ) 3 Solar Cells
[30] | Wang L, Li D B, Li K et al. 2017 Nat. Energy 2 17046 | Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer
[31] | Chen C, Zhao Y, Lu S et al. 2017 Adv. Energy Mater. 7 1700866 | Accelerated Optimization of TiO 2 /Sb 2 Se 3 Thin Film Solar Cells by High-Throughput Combinatorial Approach
[32] | Lu S, Zhao Y, Chen C, Zhou Y et al. 2018 Adv. Electron. Mater. 4 1700329 | Sb 2 Se 3 Thin-Film Photovoltaics Using Aqueous Solution Sprayed SnO 2 as the Buffer Layer
[33] | Mihailetchi V D, Wildeman J and Blom P W M 2005 Phys. Rev. Lett. 94 126602 | Space-Charge Limited Photocurrent
[34] | Koster L J A, Mihailetchi V D, Xie H and Blom P W M 2005 Appl. Phys. Lett. 87 203502 | Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells
[35] | Chu T Y and Song O K 2007 Appl. Phys. Lett. 90 203512 | Hole mobility of N,N′-bis(naphthalen-1-yl)-N,N′-bis(phenyl) benzidine investigated by using space-charge-limited currents
[36] | Malliaras G G, Shen Y and Dunlap D H 2001 Appl. Phys. Lett. 79 2582 | Nondispersive electron transport in Alq3