Antimony Selenide Thin Film Solar Cells with an Electron Transport Layer of Alq$_{3}$

Funds: Supported by the High Level Talents Project of Hainan Basic and Applied Research Program (Natural Science) (Grant No. 2019RC118), and the Open Fund of the State Key Laboratory of Molecular Reaction Dynamics in DICP (Grant No. SKLMRD-K202005).
  • Received Date: July 13, 2020
  • Published Date: September 30, 2020
  • We fabricated Sb$_{2}$Se$_{3}$ thin film solar cells using tris(8-hydroxy-quinolinato) aluminum (Alq$_{3}$) as an electron transport layer by vacuum thermal evaporation. Another small organic molecule of N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine (NPB) was used as a hole transport layer. We took ITO/NPB/Sb$_{2}$Se$_{3}$/Alq$_{3}$/Al as the device architecture. An open circuit voltage ($V_{\rm oc}$) of 0.37 V, a short circuit current density ($J_{\rm sc}$) of 21.2 mA/cm$^{2}$, and a power conversion efficiency (PCE) of 3.79% were obtained on an optimized device. A maximum external quantum efficiency of 73% was achieved at 600 nm. The $J_{\rm sc}$, $V_{\rm oc}$, and PCE were dramatically enhanced after introducing an electron transport layer of Alq$_{3}$. The results suggest that the interface state density at Sb$_{2}$Se$_{3}$/Al interface is decreased by inserting an Alq$_{3}$ layer, and the charge recombination loss in the device is suppressed. This work provides a new electron transport material for Sb$_{2}$Se$_{3}$ thin film solar cells.
  • Article Text

  • [1]
    Green M A, Hishikawa Y, Dunlop E D et al.. 2018 Prog. Photovoltaics 26 427 doi: 10.1002/pip.3040

    CrossRef Google Scholar

    [2]
    Jackson P, Wuerz R, Hariskos D et al.. 2016 Phys. Status Solidi RRL 10 583 doi: 10.1002/pssr.201600199

    CrossRef Google Scholar

    [3]
    Liu X, Chen J, Luo Met et al.. 2014 ACS Appl. Mater. & Interfaces 6 10687 doi: 10.1021/am502427s

    CrossRef Google Scholar

    [4]
    Chen C, Li W, Zhou Y et al.. 2015 Appl. Phys. Lett. 107 043905 doi: 10.1063/1.4927741

    CrossRef Google Scholar

    [5]
    Zhou Y, Leng M, Xia Z et al.. 2014 Adv. Energy Mater. 4 1301846 doi: 10.1002/aenm.201301846

    CrossRef Google Scholar

    [6]
    Voutsas G P, Papazoglou A G, Rentzeperis P J and Siapkas D 1985 Z. Kristallogr. 171 261 doi: 10.1524/zkri.1985.171.14.261

    CrossRef Google Scholar

    [7]
    Luo M, Leng M, Liu X et al.. 2014 Appl. Phys. Lett. 104 173904 doi: 10.1063/1.4874878

    CrossRef Google Scholar

    [8]
    Zhou Y, Wang L, Chen S et al.. 2015 Nat. Photon. 9 409 doi: 10.1038/nphoton.2015.78

    CrossRef Google Scholar

    [9]
    Wen X, Chen C, Lu S et al.. 2018 Nat. Commun. 9 2179 doi: 10.1038/s41467-018-04634-6

    CrossRef Google Scholar

    [10]
    Kondrotas R, Zhang J, Wang C and Tang J 2019 Sol. Energy Mater. Sol. Cells 199 16 doi: 10.1016/j.solmat.2019.04.024

    CrossRef Google Scholar

    [11]
    Liang G X, Zhang X H, Ma H L et al.. 2017 Sol. Energy Mater. Sol. Cells 160 257 doi: 10.1016/j.solmat.2016.10.042

    CrossRef Google Scholar

    [12]
    Liang G X, Zheng Z H, Fan P et al.. 2018 Sol. Energy Mater. Sol. Cells 174 263 doi: 10.1016/j.solmat.2017.09.008

    CrossRef Google Scholar

    [13]
    Hutter O S, Phillips L J, Durose K and Major J D 2018 Sol. Energy Mater. Sol. Cells 188 177 doi: 10.1016/j.solmat.2018.09.004

    CrossRef Google Scholar

    [14]
    Li D B, Yin X, Grice C R et al.. 2018 Nano Energy 49 346 doi: 10.1016/j.nanoen.2018.04.044

    CrossRef Google Scholar

    [15]
    Ngo T T, Chavhan S, Kosta I et al.. 2014 ACS Appl. Mater. & Interfaces 6 2836 doi: 10.1021/am405416a

    CrossRef Google Scholar

    [16]
    Choi Y C and Il S 2015 Adv. Funct. Mater. 25 2892 doi: 10.1002/adfm.201500296

    CrossRef Google Scholar

    [17]
    Choi Y C, Lee D U, Noh J H, Kim E K and Il S 2014 Adv. Funct. Mater. 24 3587 doi: 10.1002/adfm.201304238

    CrossRef Google Scholar

    [18]
    Choi Y C, Lee Y H, Im S H et al.. 2014 Adv. Funct. Mater. 4 1301680 doi: 10.1002/aenm.201301680

    CrossRef Google Scholar

    [19]
    Wang W, Wang X, Chen G et al.. 2018 Sol. RRL 2 1800208 doi: 10.1002/solr.201800208

    CrossRef Google Scholar

    [20]
    Shi X, Zhang X, Tian Y, Shen C, Wang C and Gao H J 2012 Appl. Surf. Sci. 258 2169 doi: 10.1016/j.apsusc.2011.02.097

    CrossRef Google Scholar

    [21]
    Tang R, Wang X, Lian W et al.. 2020 Nat. Energy 5 587 doi: 10.1038/s41560-020-0652-3

    CrossRef Google Scholar

    [22]
    Messina S, Nair M T S and Nair P K 2009 J. Electrochem. Soc. 156 H327 doi: 10.1149/1.3089358

    CrossRef Google Scholar

    [23]
    Leng M, Luo M, Chen C, Qin S et al.. 2014 Appl. Phys. Lett. 105 083905 doi: 10.1063/1.4894170

    CrossRef Google Scholar

    [24]
    Li Z, Liang X, Li G, Liu H et al.. 2019 Nat. Commun. 10 125 doi: 10.1038/s41467-018-07903-6

    CrossRef Google Scholar

    [25]
    Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510 doi: 10.1063/1.1736034

    CrossRef Google Scholar

    [26]
    Zhang L, Li Y, Li C et al.. 2017 ACS Nano 11 12753 doi: 10.1021/acsnano.7b07512

    CrossRef Google Scholar

    [27]
    Polman A, Knight M, Garnett E C, Ehrler B and Sinke W C 2016 Science 352 aad4424 doi: 10.1126/science.aad4424

    CrossRef Google Scholar

    [28]
    Li G, Li Z, Liang X et al.. 2019 ACS Appl. Mater. & Interfaces 11 828 doi: 10.1021/acsami.8b17611

    CrossRef Google Scholar

    [29]
    Wu C, Jiang C, Wang X et al.. 2019 ACS Appl. Mater. & Interfaces 11 3207 doi: 10.1021/acsami.8b18330

    CrossRef Google Scholar

    [30]
    Wang L, Li D B, Li K et al.. 2017 Nat. Energy 2 17046 doi: 10.1038/nenergy.2017.46

    CrossRef Google Scholar

    [31]
    Chen C, Zhao Y, Lu S et al.. 2017 Adv. Energy Mater. 7 1700866 doi: 10.1002/aenm.201700866

    CrossRef Google Scholar

    [32]
    Lu S, Zhao Y, Chen C, Zhou Y et al.. 2018 Adv. Electron. Mater. 4 1700329 doi: 10.1002/aelm.201700329

    CrossRef Google Scholar

    [33]
    Mihailetchi V D, Wildeman J and Blom P W M 2005 Phys. Rev. Lett. 94 126602 doi: 10.1103/PhysRevLett.94.126602

    CrossRef Google Scholar

    [34]
    Koster L J A, Mihailetchi V D, Xie H and Blom P W M 2005 Appl. Phys. Lett. 87 203502 doi: 10.1063/1.2130396

    CrossRef Google Scholar

    [35]
    Chu T Y and Song O K 2007 Appl. Phys. Lett. 90 203512 doi: 10.1063/1.2741055

    CrossRef Google Scholar

    [36]
    Malliaras G G, Shen Y and Dunlap D H 2001 Appl. Phys. Lett. 79 2582 doi: 10.1063/1.1410343

    CrossRef Google Scholar

  • Related Articles

    [1]KIM Un-Chol, JIANG Xiao-Qing. Numerical Analysis of Efficiency Enhancement in Plasmonic Thin-Film Solar Cells by Using the SILVACO TCAD Simulator [J]. Chin. Phys. Lett., 2012, 29(6): 067301. doi: 10.1088/0256-307X/29/6/067301
    [2]YAN Chang, LIU Fang-Yang, LAI Yan-Qing, LI Jie, LIU Ye-Xiang. Cu2SixSn1−xS3 Thin Films Prepared by Reactive Magnetron Sputtering For Low-Cost Thin Film Solar Cells [J]. Chin. Phys. Lett., 2011, 28(10): 108801. doi: 10.1088/0256-307X/28/10/108801
    [3]BAI Yi-Ming, WANG Jun, CHEN Nuo-Fu, YAO Jian-Xi, ZHANG Xing-Wang, YIN Zhi-Gang, ZHANG Han, HUANG Tian-Mao. Dipolar and Quadrupolar Modes of SiO2/Au Nanoshell Enhanced Light Trapping in Thin Film Solar Cells [J]. Chin. Phys. Lett., 2011, 28(8): 087306. doi: 10.1088/0256-307X/28/8/087306
    [4]ZHENG Gai-Ge, XIAN Feng-Lin, LI Xiang-Yin. Enhancement of Light Absorption in Thin Film Silicon Solar Cells with Metallic Grating and One-Dimensional Photonic Crystals [J]. Chin. Phys. Lett., 2011, 28(5): 054213. doi: 10.1088/0256-307X/28/5/054213
    [5]ZHANG Li, HE Qing, JIANG Wei-long, LIU Fang-fang, LI Chang-Jian, SUN Yun. Mo Back Contact for Flexible Polyimide Substrate Cu(In, Ga)Se2 Thin-Film Solar Cells [J]. Chin. Phys. Lett., 2008, 25(9): 3452-3454.
    [6]ZHANG Li, HE Qing, JIANG Wei-Long, LI Chang-Jian, SUN Yun. Flexible Cu(In, Ga)Se2 Thin-Film Solar Cells on Polyimide Substrate by Low-Temperature Deposition Process [J]. Chin. Phys. Lett., 2008, 25(2): 734-736.
    [7]LI Yan, HOU Yan-Bing, JIN Hui, SHI Quan-Min, LIU Jun, SUN Xin, CHANG Xiao-Wei. Enhanced Efficiency of Polymer: Fullerene Bulk Heterojunction Solar Cells with the Insertion of Thin TiO2 Layer near the LiF/Al Electrode [J]. Chin. Phys. Lett., 2007, 24(3): 818-821.
    [8]XU Chuan-Ming, SUN Yun, ZHOU Lin, LI Feng-Yan, ZHANG Li, XUE Yu-Ming, ZHOU Zhi-Qiang, HE Qing. Preparation of Cu(In,Ga)Se2 Thin Film Solar Cells by Selenization of Metallic Precursors in an Ar Atmosphere [J]. Chin. Phys. Lett., 2006, 23(8): 2259-2261.
    [9]WANG Peng, WANG Li-Duo, LI Bin, QIU Yong. Improved Voltage and Fill Factor by Using Zinc Oxide Thin Film as a Barrier Layer in Dye-Sensitized Solar Cells [J]. Chin. Phys. Lett., 2005, 22(10): 2708-2710.
    [10]Shahzad Naseem. Preparation and Properties of Evaporated CdTe and All Thin Film CdTe/CdS Solar Cells [J]. Chin. Phys. Lett., 1991, 8(5): 255-258.

Catalog

    Article views (282) PDF downloads (347) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return