[1] | Gong C and Zhang X 2019 Science 363 eaav4450 | Two-dimensional magnetic crystals and emergent heterostructure devices
[2] | Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133 | Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models
[3] | Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H et al. 2017 Nature 546 270 | Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit
[4] | Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W et al. 2017 Nature 546 265 | Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals
[5] | Zhu J X, Janoschek M, Chaves D S, Cezar J C, Durakiewicz T, Ronning F, Sassa Y, Mansson M, Scott B L, Wakeham N, Bauer E D and Thompson J D 2016 Phys. Rev. B 93 144404 | Electronic correlation and magnetism in the ferromagnetic metal
[6] | Zhuang H L, Kent P R C and Hennig R G 2016 Phys. Rev. B 93 134407 | Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet
[7] | Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z et al. 2018 Nature 563 94 | Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2
[8] | Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H and Batzill M 2018 Nat. Nanotechnol. 13 289 | Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates
[9] | O'Hara D J, Zhu T, Trout A H, Ahmed A S, Luo Y K, Lee C H, Brenner M R, Rajan S, Gupta J A, McComb D W et al. 2018 Nano Lett. 18 3125 | Room Temperature Intrinsic Ferromagnetism in Epitaxial Manganese Selenide Films in the Monolayer Limit
[10] | Yuan Q Q, Guo Z, Shi Z Q, Zhao H, Jia Z Y, Wang Q, Sun J, Wu D and Li S C 2020 Chin. Phys. Lett. 37 077502 | Ferromagnetic MnSn Monolayer Epitaxially Grown on Silicon Substrate
[11] | Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G and Cheong H 2016 Nano Lett. 16 7433 | Ising-Type Magnetic Ordering in Atomically Thin FePS 3
[12] | Wang X, Du K, Liu Y Y F, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P et al. 2016 2D Mater. 3 031009 | Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS 3 ) crystals
[13] | Jungwirth T, Marti X, Wadley P and Wunderlich J 2016 Nat. Nanotechnol. 11 231 | Antiferromagnetic spintronics
[14] | Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005 | Antiferromagnetic spintronics
[15] | Gong W, Leung C H, Sin C K, Zhang J, Zhang X, Xi B and Zhu J 2020 Chin. Phys. Lett. 37 027501 | Stable Intrinsic Long Range Antiferromagnetic Coupling in Dilutely V Doped Chalcopyrite
[16] | Sivadas N, Daniels M W, Swendsen R H, Okamoto S and Xiao D 2015 Phys. Rev. B 91 235425 | Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers
[17] | Meiklejohn W H and Bean C P 1957 Phys. Rev. 105 904 | New Magnetic Anisotropy
[18] | Dogguy-Smiri L and Dung N H 1982 Acta Crystallogr. B 38 372 | Structure du polytype rhomboédrique 3R du sulfure double de fer et de gallium Fe2Ga2S5
[19] | Blöchl P E 1994 Phys. Rev. B 50 17953 | Projector augmented-wave method
[20] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[21] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 | From ultrasoft pseudopotentials to the projector augmented-wave method
[22] | Grau-Crespo R, Corà F, Sokol A A, de Leeuw N H and Catlow C R A 2006 Phys. Rev. B 73 035116 | Electronic structure and magnetic coupling in : A DFT study using hybrid functionals and methods
[23] | Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 | First-principles calculations of the ferroelastic transition between rutile-type and -type at high pressures
[24] | Evans R F L, Fan W J, Chureemart P, Ostler T A, Ellis M O A and Chantrell R W 2014 J. Phys.: Condens. Matter 26 103202 | Atomistic spin model simulations of magnetic nanomaterials
[25] | Nakatsuji S, Tonomura H, Onuma K, Nambu Y, Sakai O, Maeno Y, Macaluso R T and Chan J Y 2007 Phys. Rev. Lett. 99 157203 | Spin Disorder and Order in Quasi-2D Triangular Heisenberg Antiferromagnets: Comparative Study of , , and
[26] | Reja S, Anisimov P S and Daghofer M 2017 Phys. Rev. B 96 085144 | From frustrated to unfrustrated: Coupling two triangular-lattice itinerant quantum magnets
[27] | Anderson P W 1950 Phys. Rev. 79 350 | Antiferromagnetism. Theory of Superexchange Interaction
[28] | Goodenough J B 1955 Phys. Rev. 100 564 | Theory of the Role of Covalence in the Perovskite-Type Manganites
[29] | Goodenough J B 1958 J. Phys. Chem. Solids 6 287 | An interpretation of the magnetic properties of the perovskite-type mixed crystals La1−xSrxCoO3−λ
[30] | Kanamori J 1959 J. Phys. Chem. Solids 10 87 | Superexchange interaction and symmetry properties of electron orbitals
[31] | Bardeen J and Shockley W 1950 Phys. Rev. 80 72 | Deformation Potentials and Mobilities in Non-Polar Crystals
[32] | Xi J, Long M, Tang L, Wang D and Shuai Z 2012 Nanoscale 4 4348 | First-principles prediction of charge mobility in carbon and organic nanomaterials
[33] | Bolotin K I, Sikes K J, Hone J, Stormer H L and Kim P 2008 Phys. Rev. Lett. 101 096802 | Temperature-Dependent Transport in Suspended Graphene
[34] | Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372 | Black phosphorus field-effect transistors
[35] | Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147 | Single-layer MoS2 transistors