[1] | Bi D, Tress W, Dar M I, Gao P, Luo J, Renevier C, Schenk K, Abate A, Giordano F, Baena J P C, Zakeeruddin S M, Nazeeruddin M K, Grätzel M and Hagfeldt A 2016 Sci. Adv. 2 e1501170 | Efficient luminescent solar cells based on tailored mixed-cation perovskites
[2] | Stolterfoht M, Wolff C M, Amir Y, Paulke A, Perdigon L, Caprioglio P and Neher D 2017 Energy & Environ. Sci. 10 1530 | Approaching the fill factor Shockley–Queisser limit in stable, dopant-free triple cation perovskite solar cells
[3] | Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H and Seok S I I 2017 Science 356 1376 | Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells
[4] | Eperon G E, Paternò G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F and Snaith H J 2015 J. Mater. Chem. A 3 19688 | Inorganic caesium lead iodide perovskite solar cells
[5] | Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M A, Wang H L and Mohite A D 2015 Science 347 522 | High-efficiency solution-processed perovskite solar cells with millimeter-scale grains
[6] | Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S and Sum T C 2013 Science 342 344 | Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3
[7] | Marchioro A, Teuscher J, Friedrich D, Kunst M, van de Krol R, Moehl T, Grätzel M and Moser J E 2014 Nat. Photon. 8 250 | Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells
[8] | Xiao Z and Yan Y 2017 Adv. Energy Mater. 7 1701136 | Progress in Theoretical Study of Metal Halide Perovskite Solar Cell Materials
[9] | Best Research-Cell Efficiency Chart (NREL, accessed 25 June 2020) https://www.nrel.gov/pv/cell-efficiency.html |
[10] | Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z and You J 2019 Nat. Photon. 13 460 | Surface passivation of perovskite film for efficient solar cells
[11] | Tan H, Jain A, Voznyy O, Lan X, de Arquer F P G, Fan J Z, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan L N, Zhao Y, Lu Z H, Yang Z, Hoogland S and Sargent E H 2017 Science 355 722 | Efficient and stable solution-processed planar perovskite solar cells via contact passivation
[12] | Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Seok S I I, Lee J and Seo J 2018 Nat. Energy 3 682 | A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells
[13] | Zhang Y Y, Chen S, Xu P, Xiang H, Gong X G, Walsh A and Wei S H 2018 Chin. Phys. Lett. 35 036104 | Intrinsic Instability of the Hybrid Halide Perovskite Semiconductor CH 3 NH 3 PbI 3 *
[14] | Schulz P 2018 ACS Energy Lett. 3 1287 | Interface Design for Metal Halide Perovskite Solar Cells
[15] | Ma J, Guo X, Zhou L, Lin Z, Zhang C, Yang Z, Lu G, Chang J and Hao Y 2018 ACS Appl. Energy Mater. 1 3826 | Enhanced Planar Perovskite Solar Cell Performance via Contact Passivation of TiO 2 /Perovskite Interface with NaCl Doping Approach
[16] | Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 | The rise of graphene
[17] | Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033 | 2D transition metal dichalcogenides
[18] | Coleman J N, Lotya M, O'Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J, Shvets I V, Arora S K, Stanton G, Kim H Y, Lee K, Kim G T, Duesberg G S, Hallam T, Boland J J, Wang J J, Donegan J F, Grumlan J C, Moriarty G, Shmeliov A, Nicholls R J, Perkins J M, Grieveson E M, Theuwissen K, McComb D W, Nellist P D and Nicolosi V 2011 Science 331 568 | Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials
[19] | Liu Z, Lau S P and Yan F 2015 Chem. Soc. Rev. 44 5638 | Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing
[20] | Zhang H 2015 ACS Nano 9 9451 | Ultrathin Two-Dimensional Nanomaterials
[21] | Haigh S J, Gholinia A, Jalil R, Romani S, Britnell L, Elias D C, Novoselov K S, Ponomarenko L A, Geim A K and Gorbachev R 2012 Nat. Mater. 11 764 | Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices
[22] | Hong X, Kim J, Shi S F, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y and Wang F 2014 Nat. Nanotechnol. 9 682 | Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures
[23] | Zhu X, Monahan N R, Gong Z, Zhu H, Williams K W and Nelson C A 2015 J. Am. Chem. Soc. 137 8313 | Charge Transfer Excitons at van der Waals Interfaces
[24] | Ceballos F, Bellus M Z, Chiu H Y and Zhao H 2014 ACS Nano 8 12717 | Ultrafast Charge Separation and Indirect Exciton Formation in a MoS 2 –MoSe 2 van der Waals Heterostructure
[25] | He Y F, Wang L X, Xiao Z X, Lv Y W, Liao L and Jiang C Z 2020 Chin. Phys. Lett. 37 088502 | Normal Strain-Induced Tunneling Behavior Promotion in van der Waals Heterostructures
[26] | Yin G, Zhao H, Feng J, Sun J, Yan J, Liu Z, Lin S and Liu S 2018 J. Mater. Chem. A 6 9132 | Low-temperature and facile solution-processed two-dimensional TiS 2 as an effective electron transport layer for UV-stable planar perovskite solar cells
[27] | Jiang L L, Wang Z K, Li M, Zhang C C, Ye Q Q, Hu K H, Lu D Z, Fang P F and Liao L S 2018 Adv. Funct. Mater. 28 1705875 | Passivated Perovskite Crystallization via g -C 3 N 4 for High-Performance Solar Cells
[28] | Liu B, Long M, Cai M Q and Yang J 2018 Appl. Phys. Lett. 112 043901 | Interface engineering of CsPbI 3 -black phosphorus van der Waals heterostructure
[29] | Yoon J, Sung H, Lee G, Cho W, Ahn N, Jung H S and Choi M 2017 Energy & Environ. Sci. 10 337 | Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources
[30] | Heo J H, Shin D H, Jang M H, Lee M L, Kang M G and Im S H 2017 J. Mater. Chem. A 5 21146 | Highly flexible, high-performance perovskite solar cells with adhesion promoted AuCl 3 -doped graphene electrodes
[31] | Liu Z, You P, Xie C, Tang G and Yan F 2016 Nano Energy 28 151 | Ultrathin and flexible perovskite solar cells with graphene transparent electrodes
[32] | Zhao X, Tao L, Li H, Huang W, Sun P, Liu J, Liu S, Sun Q, Cui Z, Sun L, Shen Y, Yang Y and Wang M 2018 Nano Lett. 18 2442 | Efficient Planar Perovskite Solar Cells with Improved Fill Factor via Interface Engineering with Graphene
[33] | Huang P, Wang Z W, Liu Y, Zhang K, Yuan L, Zhou Y, Song B and Li Y 2017 ACS Appl. Mater. & Interfaces 9 25323 | Water-Soluble 2D Transition Metal Dichalcogenides as the Hole-Transport Layer for Highly Efficient and Stable p–i–n Perovskite Solar Cells
[34] | Mosconi E, Azpiroz J M and De Angelis F 2015 Chem. Mater. 27 4885 | Ab Initio Molecular Dynamics Simulations of Methylammonium Lead Iodide Perovskite Degradation by Water
[35] | Ran C, Xu J, Gao W, Huang C and Dou S 2018 Chem. Soc. Rev. 47 4581 | Defects in metal triiodide perovskite materials towards high-performance solar cells: origin, impact, characterization, and engineering
[36] | Dong Y, Li K, Luo W, Zhu C, Guan H, Wang H, Wang L, Deng K, Zhou H, Xie H, Bai Y, Li Y and Chen Q 2020 Angew. Chem. Int. Ed. 59 12931 | The Role of Surface Termination in Halide Perovskites for Efficient Photocatalytic Synthesis
[37] | Perdew J P, Ernzerhof M and Burke K 1996 J. Chem. Phys. 105 9982 | Rationale for mixing exact exchange with density functional approximations
| Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[38] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 | From ultrasoft pseudopotentials to the projector augmented-wave method
[39] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[40] | Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104 | A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
[41] | Bengtsson L 1999 Phys. Rev. B 59 12301 | Dipole correction for surface supercell calculations
[42] | Ferreira L G, Marques M and Teles L K 2008 Phys. Rev. B 78 125116 | Approximation to density functional theory for the calculation of band gaps of semiconductors
[43] | Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 | Special points for Brillouin-zone integrations
[44] | Heyd J, Scuseria G E and Ernzerhof 2003 J. Chem. Phys. 118 8207 | Hybrid functionals based on a screened Coulomb potential
[45] | Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033 | Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility
[46] | Zhang S, Yang J, Xu R, Wang F, Li W, Ghufran M, Zhang Y W, Yu Z, Zhang G, Qin Q and Lu Y 2014 ACS Nano 8 9590 | Extraordinary Photoluminescence and Strong Temperature/Angle-Dependent Raman Responses in Few-Layer Phosphorene
[47] | Qiao J, Kong X, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 4475 | High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus
[48] | Rudenko A N and Katsnelson M I 2014 Phys. Rev. B 89 201408 | Quasiparticle band structure and tight-binding model for single- and bilayer black phosphorus
[49] | Bader R F W 1991 Chem. Rev. 91 893 | A quantum theory of molecular structure and its applications
[50] | Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397 | A simple measure of electron localization in atomic and molecular systems
[51] | Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M and Snaith H J 2014 Energy & Environ. Sci. 7 982 | Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells
[52] | Giorgi G, Fujisawa J I, Segawa H and Yamashita K 2014 J. Phys. Chem. C 118 12176 | Cation Role in Structural and Electronic Properties of 3D Organic–Inorganic Halide Perovskites: A DFT Analysis
[53] | Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T and Luther J M 2016 Science 354 92 | Quantum dot-induced phase stabilization of -CsPbI3 perovskite for high-efficiency photovoltaics
[54] | Graziano G, Klimeš J, Fernandez-Alonso F and Michaelides A 2012 J. Phys.: Condens. Matter 24 424216 | Improved description of soft layered materials with van der Waals density functional theory
[55] | Belpassi L, Reca M L, Tarantelli F, Roncaratti L F, Pirani F, Cappelletti D, Faure A and Scribano Y 2010 J. Am. Chem. Soc. 132 13046 | Charge-Transfer Energy in the Water−Hydrogen Molecular Aggregate Revealed by Molecular-Beam Scattering Experiments, Charge Displacement Analysis, and ab Initio Calculations
[56] | Ji X, Zhang J, Wang Y, Qian H and Yu Z 2013 Phys. Chem. Chem. Phys. 15 17883 | A theoretical model for metal–graphene contact resistance using a DFT–NEGF method
[57] | Wang Y, Yang R X, Quhe R, Zhong H, Cong L, Ye M, Ni Z, Song Z, Yang J, Shi J, Li J and Lu J 2016 Nanoscale 8 1179 | Does p-type ohmic contact exist in WSe 2 –metal interfaces?
[58] | Zhu S, Ni Y, Liu J and Yao K 2015 J. Phys. D 48 445101 | The study of interaction and charge transfer at black phosphorus–metal interfaces
[59] | Cao Y H, Deng Z Y, Wang M Z, Bai J T, Wei S H and Feng H J 2018 J. Phys. Chem. C 122 17228 | Interface Engineering of Graphene/CH 3 NH 3 PbI 3 Heterostructure for Novel p–i–n Structural Perovskites Solar Cells
[60] | Cao Y H, Li Y F, He J W, Qian C X, Zhang Q, Bai J T and Feng H J 2019 Adv. Mater. Interfaces 6 1901330 | Asymmetric Strain‐Introduced Interface Effect on the Electronic and Optical Properties of the CsPbI 3 /SnS van der Waals Heterostructure