[1] | Lin J, Lai Z Y and Li X 2020 Phys. Rev. A 101 052327 | Quantum adiabatic algorithm design using reinforcement learning
[2] | Tranter A D, Slatyer H J, Hush M R, Leung A C, Everett J L, Paul K V, Vernaz-Gris P, Lam P K, Buchler B C and Campbell G T 2018 Nat. Commun. 9 4360 | Multiparameter optimisation of a magneto-optical trap using deep learning
[3] | Henson B M, Shin D K, Thomas K F, Ross J A, Hush M R, Hodgman S S and Truscott A G 2018 Proc. Natl. Acad. Sci. USA 115 13216 | Approaching the adiabatic timescale with machine learning
[4] | Durand A, Wiesner T, Gardner M A, Robitaille E, Bilodeau A, Gagné C, De Koninck P and Lavoie-Cardinal F 2018 Nat. Commun. 9 5247 | A machine learning approach for online automated optimization of super-resolution optical microscopy
[5] | Bukov M 2018 Phys. Rev. B 98 224305 | Reinforcement learning for autonomous preparation of Floquet-engineered states: Inverting the quantum Kapitza oscillator
[6] | Nadell C C, Huang B, Malof J M and Padilla W J 2019 Opt. Express 27 27523 | Deep learning for accelerated all-dielectric metasurface design
[7] | An S, Fowler C, Zhang H et al. 2019 arXiv:1906.03387 [physics.optics] | A Novel Modeling Approach for All-Dielectric Metasurfaces Using Deep Neural Networks
[8] | Lohani S, Knutson E M, Zhang W and Glasser R T 2019 OSA Continuum 2 3438 | Dispersion characterization and pulse prediction with machine learning
[9] | An Z and Zhou D L 2019 Europhys. Lett. 126 60002 | Deep reinforcement learning for quantum gate control
[10] | Bukov M, Day A G R, Sels D, Weinberg P, Polkovnikov A and Mehta P 2018 Phys. Rev. X 8 031086 | Reinforcement Learning in Different Phases of Quantum Control
[11] | Kokhanovskiy A, Bednyakova A, Kuprikov E, Ivanenko A, Dyatlov M, Lotkov D, Kobtsev S and Turitsyn S 2019 Opt. Lett. 44 003410 | Machine learning-based pulse characterization in figure-eight mode-locked lasers
[12] | Chen F, Chen J J, Wu L N, Liu Y C and You L 2019 Phys. Rev. A 100 041801 | Extreme spin squeezing from deep reinforcement learning
[13] | Torlai G, Timar B, Van Nieuwenburg E P L, Levine H, Omran A, Keesling A, Bernien H, Greiner M, Vuletić V, Lukin M D, Melko R G and Endres M 2019 Phys. Rev. Lett. 123 230504 | Integrating Neural Networks with a Quantum Simulator for State Reconstruction
[14] | Kokhanovskiy A, Ivanenko A, Kobtsev S, Smirnov S and Turitsyn S 2019 Sci. Rep. 9 2916 | Machine Learning Methods for Control of Fibre Lasers with Double Gain Nonlinear Loop Mirror
[15] | Zhang X M, Wei Z, Asad R, Yang X C and Wang X 2019 npj Quantum Inf. 5 85 | When does reinforcement learning stand out in quantum control? A comparative study on state preparation
[16] | Hou S C and Yi X X 2020 Quantum Inf. Process. 19 8 | Quantum Lyapunov control with machine learning
[17] | Yao J, Bukov M and Lin L 2020 arXiv:2002.01068 [quant-ph] | Policy Gradient based Quantum Approximate Optimization Algorithm
[18] | Schäfer F, Kloc M, Bruder C and Lörch N 2020 arXiv:2002.08376 [quant-ph] | A differentiable programming method for quantum control
[19] | Palmieri A M, Kovlakov E, Bianchi F, Yudin D, Straupe S, Biamonte J D and Kulik S 2020 npj Quantum Inf. 6 20 | Experimental neural network enhanced quantum tomography
[20] | Lu H, Xu H, Zhao J and Hou D 2020 Sci. Rep. 10 116 | A Deep Ultraviolet Mode-locked Laser Based on a Neural Network
[21] | Meng F and Dudley J M 2020 Light: Sci. & Appl. 9 26 | Toward a self-driving ultrafast fiber laser
[22] | Wigley P B, Everitt P J, van den Hengel A, Bastian J W, Sooriyabandara M A, McDonald G D, Hardman K S, Quinlivan C D, Manju P, Kuhn C C N, Petersen I R, Luiten A N, Hope J J, Robins N P and Hush M R 2016 Sci. Rep. 6 25890 | Fast machine-learning online optimization of ultra-cold-atom experiments
[23] | Barker A J, Style H, Luksch K, Sunami S, Garrick D, Hill F, Foot C J and Bentine E 2020 Mach. Learn.: Sci. Technol. 1 015007 | Applying machine learning optimization methods to the production of a quantum gas
[24] | Nakamura I, Kanemura A, Nakaso T, Yamamoto R and Fukuhara T 2019 Opt. Express 27 20435 | Non-standard trajectories found by machine learning for evaporative cooling of 87 Rb atoms
[25] | Davletov E T, Tsyganok V V, Khlebnikov V A, Pershin D A, Shaykin D V and Akimov A V 2020 Phys. Rev. A 102 011302 | Machine learning for achieving Bose-Einstein condensation of thulium atoms
[26] | Settles B 2012 Synthesis Lectures on Artificial Intelligence and Machine Learning 6 1 | Active Learning
[27] | Rubens N, Elahi M, Sugiyama M and Kaplan D 2015 Recommender Systems Handbook (Boston: Springer) pp 809–846 | Recommender Systems Handbook
[28] | Dai C and Glotzer S C 2020 J. Phys. Chem. B 124 1275 | Efficient Phase Diagram Sampling by Active Learning
[29] | Noé F 2018 arXiv:1812.07669 [physics.chem-ph] | Machine Learning for Molecular Dynamics on Long Timescales
[30] | Jiang J, Sivak D A and Thomson M 2019 arXiv:1903.10474 [cond-mat.dis-nn] | Active Learning of Spin Network Models
[31] | Casares P A M and Martin-Delgado M A 2020 New J. Phys. 22 073026 | A quantum active learning algorithm for sampling against adversarial attacks
[32] | Svendsen D H, Martino L and Camps-Valls G 2020 Pattern Recognit. 100 107103 | Active emulation of computer codes with Gaussian processes – Application to remote sensing
[33] | Ding Y, Martín-Guerrero J D, Sanz M, Magdalena-Benedicto R, Chen X and Solano E 2020 Phys. Rev. Lett. 124 140504 | Retrieving Quantum Information with Active Learning
[34] | Yao J, Wu Y, Koo J, Yan B and Zhai H 2020 Phys. Rev. Res. 2 013287 | Active learning algorithm for computational physics
[35] | Smith J S, Nebgen B, Lubbers N, Isayev O and Roitberg A E 2018 J. Chem. Phys. 148 241733 | Less is more: Sampling chemical space with active learning
[36] | Gubaev K, Podryabinkin E V, Hart G L W and Shapeev A V 2019 Comput. Mater. Sci. 156 148 | Accelerating high-throughput searches for new alloys with active learning of interatomic potentials
[37] | Musil F, Willatt M J, Langovoy M A and Ceriotti M 2019 J. Chem. Theory Comput. 15 906 | Fast and Accurate Uncertainty Estimation in Chemical Machine Learning
[38] | Zhang L, Lin D Y, Wang H, Car R and W E 2019 Phys. Rev. Mater. 3 023804 | Active learning of uniformly accurate interatomic potentials for materials simulation
[39] | Gastegger M and Marquetand P 2018 arXiv:1812.07676 [physics.chem-ph] | Molecular Dynamics with Neural-Network Potentials
[40] | Sivaraman G, Krishnamoorthy A N, Baur M, Holm C, Stan M, Csányi G, Benmore C and Mayagoitia V 2019 arXiv:1910.10254 [cond-mat.mtrl-sci] | Machine Learning Inter-Atomic Potentials Generation Driven by Active Learning: A Case Study for Amorphous and Liquid Hafnium dioxide
[41] | Teichert G H, Natarajan A R, Van der Ven A and Garikipati K 2020 arXiv:2002.02305 [cs.LG] | Scale bridging materials physics: Active learning workflows and integrable deep neural networks for free energy function representations in alloys
[42] | Lin Q, Zhang Y, Zhao B and Jiang B 2020 J. Chem. Phys. 152 154104 | Automatically growing global reactive neural network potential energy surfaces: A trajectory-free active learning strategy
[43] | Malkiel I, Mrejen M, Nagler A, Arieli U, Wolf L and Suchowski H 2018 Light: Sci. & Appl. 7 60 | Plasmonic nanostructure design and characterization via Deep Learning
[44] | Ketterle W and Druten N J V 1996 Adv. At. Mol. Opt. Phys. 37 181 |
[45] | Hess H F 1986 Phys. Rev. B 34 3476 | Evaporative cooling of magnetically trapped and compressed spin-polarized hydrogen
[46] | Pereira Dos Santos F, Léonard J, Wang J, Barrelet C J, Perales F, Rasel E, Unnikrishnan C S, Leduc M and Cohen-Tannoudji C 2001 Phys. Rev. Lett. 86 3459 | Bose-Einstein Condensation of Metastable Helium
[47] | Verkerk P, Lounis B, Salomon C, Cohen-Tannoudji C, Courtois J Y and Grynberg G 1992 Phys. Rev. Lett. 68 3861 | Dynamics and spatial order of cold cesium atoms in a periodic optical potential
[48] | Bradley C C, Sackett C A, Tollett J J and Hulet R G 1995 Phys. Rev. Lett. 75 1687 | Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions
[49] | Bradley C C, Sackett C A and Hulet R G 1997 Phys. Rev. Lett. 78 985 | Bose-Einstein Condensation of Lithium: Observation of Limited Condensate Number
[50] | Phillips W D 1998 Rev. Mod. Phys. 70 721 | Nobel Lecture: Laser cooling and trapping of neutral atoms
[51] | Davis K B, Mewes M O and Ketterle W 1995 Appl. Phys. B 60 155 | An analytical model for evaporative cooling of atoms
[52] | Fried D G, Killian T C, Willmann L, Landhuis D, Moss S C, Kleppner D and Greytak T J 1998 Phys. Rev. Lett. 81 3811 | Bose-Einstein Condensation of Atomic Hydrogen
[53] | Greytak T J 1995 Bose–Einstein Condensation ed Griffin A, Snoke D W and Stringari S (Cambridge: Cambridge University Press) p 131 |
[54] | Chu S, Cohen-Tannoudji C and Phillips W D 1998 Rev. Mod. Phys. 70 685 | Nobel Lecture: The manipulation of neutral particles
[55] | Luiten O J, Reynolds M W and Walraven J T M 1996 Phys. Rev. A 53 381 | Kinetic theory of the evaporative cooling of a trapped gas
[56] | Holland M J, DeMarco B and Jin D S 2000 Phys. Rev. A 61 053610 | Evaporative cooling of a two-component degenerate Fermi gas
[57] | Luo L, Clancy B, Joseph J, Kinast J, Turlapov A and Thomas J E 2006 New J. Phys. 8 213 | Evaporative cooling of unitary Fermi gas mixtures in optical traps
[58] | Fu Z, Wang P, Chai S, Huang L and Zhang J 2011 Phys. Rev. A 84 043609 | Bose-Einstein condensate in a light-induced vector gauge potential using 1064-nm optical-dipole-trap lasers
[59] | Xiong D, Wang P, Fu Z, Chai S and Zhang J 2010 Chin. Opt. Lett. 8 627 | Evaporative cooling of 87 Rb atoms into Bose-Einstein condensate in an optical dipole trap
[60] | Chai S, Wang P, Fu Z, Huang L and Zhang J 2012 Acta Sin. Quantum Opt. 18 171 |
[61] | McNaught A D and Wilkinson A 1997 IUPAC Compendium of Chemical Terminology 2nd edn (Oxford: Blackwell Science) |
[62] | Verhoeven J W 1996 Pure Appl. Chem. 68 2223 | Glossary of terms used in photochemistry (IUPAC Recommendations 1996)