[1] | El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S and Christodoulides D N 2018 Nat. Phys. 14 11 | Non-Hermitian physics and PT symmetry
[2] | Miri M A and Alù A 2019 Science 363 eaar7709 | Exceptional points in optics and photonics
[3] | Özdemir Ş K, Rotter S, Nori F and Yang L 2019 Nat. Mater. 18 783 | Parity–time symmetry and exceptional points in photonics
[4] | Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243 | Real Spectra in Non-Hermitian Hamiltonians Having Symmetry
[5] | Bender C M 2007 Rep. Prog. Phys. 70 947 | Making sense of non-Hermitian Hamiltonians
[6] | Rotter I 2009 J. Phys. A 42 153001 | A non-Hermitian Hamilton operator and the physics of open quantum systems
[7] | Heiss W D 2012 J. Phys. A 45 444016 | The physics of exceptional points
[8] | Heiss W D and Steeb W H 1991 J. Math. Phys. 32 3003 | Avoided level crossings and Riemann sheet structure
[9] | Heiss W D 2000 Phys. Rev. E 61 929 | Repulsion of resonance states and exceptional points
[10] | Jing H, Özdemir Ş K, Geng Z, Zhang J, Lü X Y, Peng B, Yang L and Nori F 2015 Sci. Rep. 5 9663 | Optomechanically-induced transparency in parity-time-symmetric microresonators
[11] | Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H and Christodoulides D N 2011 Phys. Rev. Lett. 106 213901 | Unidirectional Invisibility Induced by -Symmetric Periodic Structures
[12] | Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F and Scherer A 2013 Nat. Mater. 12 108 | Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies
[13] | Hodaei H, Miri M A, Heinrich M, Christodoulides D N and Khajavikhan M 2014 Science 346 975 | Parity-time-symmetric microring lasers
[14] | Feng L, Wong Z J, Ma R M, Wang Y and Zhang X 2014 Science 346 972 | Single-mode laser by parity-time symmetry breaking
[15] | Zhen B, Hsu C W, Igarashi Y, Lu L, Kaminer I, Pick A, Chua S L, Joannopoulos J D and Soljačić M 2015 Nature 525 354 | Spawning rings of exceptional points out of Dirac cones
[16] | Wiersig J 2014 Phys. Rev. Lett. 112 203901 | Enhancing the Sensitivity of Frequency and Energy Splitting Detection by Using Exceptional Points: Application to Microcavity Sensors for Single-Particle Detection
[17] | Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N and Khajavikhan M 2017 Nature 548 187 | Enhanced sensitivity at higher-order exceptional points
[18] | Chen W, Özdemir Ş K, Zhao G, Wiersig J and Yang L 2017 Nature 548 192 | Exceptional points enhance sensing in an optical microcavity
[19] | Zhang M, Sweeney W, Hsu C W, Yang L, Stone A D and Jiang L 2019 Phys. Rev. Lett. 123 180501 | Quantum Noise Theory of Exceptional Point Amplifying Sensors
[20] | Dembowski C, Gräf H D, Harney H L, Heine A, Heiss W D, Rehfeld H and Richter A 2001 Phys. Rev. Lett. 86 787 | Experimental Observation of the Topological Structure of Exceptional Points
[21] | Mailybaev A A, Kirillov O N and Seyranian A P 2005 Phys. Rev. A 72 014104 | Geometric phase around exceptional points
[22] | Lee S B, Yang J, Moon S, Lee S Y, Shim J B, Kim S W, Lee J H and An K 2009 Phys. Rev. Lett. 103 134101 | Observation of an Exceptional Point in a Chaotic Optical Microcavity
[23] | Gao T, Estrecho E, Bliokh K Y, Liew T C H, Fraser M D, Brodbeck S, Kamp M, Schneider C, Höfling S, Yamamoto Y, Nori F, Kivshar Y S, Truscott A G, Dall R G and Ostrovskaya E A 2015 Nature 526 554 | Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard
[24] | Uzdin R, Mailybaev A and Moiseyev N 2011 J. Phys. A 44 435302 | On the observability and asymmetry of adiabatic state flips generated by exceptional points
[25] | Berry M V and Uzdin R 2011 J. Phys. A 44 435303 | Slow non-Hermitian cycling: exact solutions and the Stokes phenomenon
[26] | Gilary I, Mailybaev A A and Moiseyev N 2013 Phys. Rev. A 88 010102(R) | Time-asymmetric quantum-state-exchange mechanism
[27] | Milburn T J, Doppler J, Holmes C A, Portolan S, Rotter S and Rabl P 2015 Phys. Rev. A 92 52124 | General description of quasiadiabatic dynamical phenomena near exceptional points
[28] | Hassan A U, Zhen B, Soljačić M, Khajavikhan M and Christodoulides D N 2017 Phys. Rev. Lett. 118 93002 | Dynamically Encircling Exceptional Points: Exact Evolution and Polarization State Conversion
[29] | Wang H, Lang L J and Chong Y D 2018 Phys. Rev. A 98 12119 | Non-Hermitian dynamics of slowly varying Hamiltonians
[30] | Doppler J, Mailybaev A A, Böhm J, Kuhl U, Girschik A, Libisch F, Milburn T J, Rabl P, Moiseyev N and Rotter S 2016 Nature 537 76 | Dynamically encircling an exceptional point for asymmetric mode switching
[31] | Xu H, Mason D, Jiang L and Harris J G E 2016 Nature 537 80 | Topological energy transfer in an optomechanical system with exceptional points
[32] | Yoon J W, Choi Y, Hahn C, Kim G, Song S H, Yang K Y, Lee J Y, Kim Y, Lee C S, Shin J K, Lee H S and Berini P 2018 Nature 562 86 | Time-asymmetric loop around an exceptional point over the full optical communications band
[33] | Zhang X L, Wang S, Hou B and Chan C T 2018 Phys. Rev. X 8 021066 | Dynamically Encircling Exceptional Points: In situ Control of Encircling Loops and the Role of the Starting Point
[34] | Liu W, Wu Y, Duan C K, Rong X and Du J 2020 arXiv:2002.06798v1 [quant-ph] | Dynamically encircling an exceptional point in a real quantum system
[35] | Hassan A U, Galmiche G L, Harari G, LiKamWa P, Khajavikhan M, Segev M and Christodoulides D N 2017 Phys. Rev. A 96 052129 | Chiral state conversion without encircling an exceptional point
[36] | Hassan A U, Galmiche G L, Harari G, LiKamWa P, Khajavikhan M, Segev M and Christodoulides D N 2017 Phys. Rev. A 96 069908 | Erratum: Chiral state conversion without encircling an exceptional point [Phys. Rev. A 96 , 052129 (2017)]
[37] | Zhang X L, Song J F, Chan C T and Sun H B 2019 Phys. Rev. A 99 063831 | Distinct outcomes by dynamically encircling an exceptional point along homotopic loops
[38] | Geim A K, Simon M D, Boamfa M I and Heflinger L O 1999 Nature 400 323 | Magnet levitation at your fingertips
[39] | Slezak B R, Lewandowski C W, Hsu J F and D'Urso B 2018 New J. Phys. 20 063028 | Cooling the motion of a silica microsphere in a magneto-gravitational trap in ultra-high vacuum
[40] | Zheng D, Leng Y, Kong X, Li R, Wang Z, Luo X, Zhao J, Duan C K, Huang P, Du J, Carlesso M and Bassi A 2020 Phys. Rev. Res. 2 013057 | Room temperature test of the continuous spontaneous localization model using a levitated micro-oscillator
[41] | Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A and Christodoulides D N 2009 Phys. Rev. Lett. 103 93902 | Observation of -Symmetry Breaking in Complex Optical Potentials
[42] | Nenciu G and Rasche G 1992 J. Phys. A 25 5741 | On the adiabatic theorem for nonself-adjoint Hamiltonians
[43] | Gong J and Wang Q 2019 Phys. Rev. A 99 012107 | Piecewise adiabatic following: General analysis and exactly solvable models
[44] | Demange G and Graefe E M 2012 J. Phys. A 45 025303 | Signatures of three coalescing eigenfunctions
[45] | Zhang X L and Chan C T 2019 Commun. Phys. 2 63 | Dynamically encircling exceptional points in a three-mode waveguide system
[46] | Longhi S 2019 Phys. Rev. Lett. 122 237601 | Topological Phase Transition in non-Hermitian Quasicrystals
[47] | Okuma N, Kawabata K, Shiozaki K and Sato M 2020 Phys. Rev. Lett. 124 86801 | Topological Origin of Non-Hermitian Skin Effects
[48] | Xiao L, Deng T S, Wang K K, Zhu G Y, Wang Z, Yi W and Xue P 2020 Nat. Phys. 16 761 | Non-Hermitian bulk–boundary correspondence in quantum dynamics
[49] | Yang K, Zhou L, Ma W, Kong X, Wang P, Qin X, Rong X, Wang Y, Shi F, Gong J and Du J 2019 Phys. Rev. B 100 085308 | Floquet dynamical quantum phase transitions
[50] | Li J, Harter A K, Liu J, de Melo L, Joglekar Y N and Luo L 2019 Nat. Commun. 10 855 | Observation of parity-time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms