[1] | Tame M S, McEnery K, Özdemir Ş, Lee J, Maier S and Kim M 2013 Nat. Phys. 9 329 | Quantum plasmonics
[2] | Vest B, Dheur M C, Devaux É, Baron A, Rousseau E, Hugonin J P, Greffet J J, Messin G and Marquier F 2017 Science 356 1373 | Anti-coalescence of bosons on a lossy beam splitter
[3] | Xu D, Xiong X, Wu L, Ren X F, Png C E, Guo G C, Gong Q and Xiao Y F 2018 Adv. Opt. Photon. 10 703 | Quantum plasmonics: new opportunity in fundamental and applied photonics
[4] | Alpeggiani F and Andreani L C 2014 Plasmonics 9 965 | Quantum Theory of Surface Plasmon Polaritons: Planar and Spherical Geometries
[5] | Yu C and Liu S 2019 Appl. Phys. Lett. 114 181106 | Quantum theory of surface polariton Cherenkov light radiation source and its fluctuation
[6] | Chang D, Sørensen A S, Hemmer P and Lukin M 2006 Phys. Rev. Lett. 97 053002 | Quantum Optics with Surface Plasmons
[7] | Scholl J A, Koh A L and Dionne J A 2012 Nature 483 421 | Quantum plasmon resonances of individual metallic nanoparticles
[8] | Zuloaga J, Prodan E and Nordlander P 2009 Nano Lett. 9 887 | Quantum Description of the Plasmon Resonances of a Nanoparticle Dimer
[9] | Neuman T, Esteban R, Casanova D, Garcı́a-Vidal F J and Aizpurua J 2018 Nano Lett. 18 2358 | Coupling of Molecular Emitters and Plasmonic Cavities beyond the Point-Dipole Approximation
[10] | Archambault A, Marquier F, Greffet J J and Arnold C 2010 Phys. Rev. B 82 035411 | Quantum theory of spontaneous and stimulated emission of surface plasmons
[11] | Brzozowski M J and Singh M R 2017 Plasmonics 12 1 | Photon Statistics of a Hybrid Quantum Dot-Metal Nanoparticle Cluster
[12] | González-Tudela A, Huidobro P, Martı́n-Moreno L, Tejedor C and Garcı́a-Vidal F 2013 Phys. Rev. Lett. 110 126801 | Theory of Strong Coupling between Quantum Emitters and Propagating Surface Plasmons
[13] | Mao L, Li Z, Wu B and Xu H 2009 Appl. Phys. Lett. 94 243102 | Effects of quantum tunneling in metal nanogap on surface-enhanced Raman scattering
[14] | Raether H 1988 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Berlin: Springer) |
[15] | Xu H, Bjerneld E J, Käll M and Börjesson L 1999 Phys. Rev. Lett. 83 4357 | Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering
[16] | Chen W, Zhang S, Kang M, Liu W, Ou Z, Li Y, Zhang Y, Guan Z and Xu H 2018 Light: Sci. & Appl. 7 56 | Probing the limits of plasmonic enhancement using a two-dimensional atomic crystal probe
[17] | Danckwerts M and Novotny L 2007 Phys. Rev. Lett. 98 026104 | Optical Frequency Mixing at Coupled Gold Nanoparticles
[18] | Fasel S, Robin F, Moreno E, Erni D, Gisin N and Zbinden H 2005 Phys. Rev. Lett. 94 110501 | Energy-Time Entanglement Preservation in Plasmon-Assisted Light Transmission
[19] | Wei H, Li Z, Tian X, Wang Z, Cong F, Liu N, Zhang S, Nordlander P, Halas N J and Xu H 2011 Nano Lett. 11 471 | Quantum Dot-Based Local Field Imaging Reveals Plasmon-Based Interferometric Logic in Silver Nanowire Networks
[20] | Wei H, Wang Z, Tian X, Käll M and Xu H 2011 Nat. Commun. 2 387 | Cascaded logic gates in nanophotonic plasmon networks
[21] | De Leon N P, Shields B J, Chun L Y, Englund D E, Akimov A V, Lukin M D and Park H 2012 Phys. Rev. Lett. 108 226803 | Tailoring Light-Matter Interaction with a Nanoscale Plasmon Resonator
[22] | Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 | Topological insulators and superconductors
[23] | Mikhailov S A and Ziegler K 2007 Phys. Rev. Lett. 99 016803 | New Electromagnetic Mode in Graphene
[24] | Hwang E and Sarma S D 2007 Phys. Rev. B 75 205418 | Dielectric function, screening, and plasmons in two-dimensional graphene
[25] | Grigorenko A, Polini M and Novoselov K 2012 Nat. Photon. 6 749 | Graphene plasmonics
[26] | Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R et al 2011 Nat. Nanotechnol. 6 630 | Graphene plasmonics for tunable terahertz metamaterials
[27] | Di Pietro P, Ortolani M, Limaj O, Di Gaspare A, Giliberti V, Giorgianni F, Brahlek M, Bansal N, Koirala N, Oh S et al 2013 Nat. Nanotechnol. 8 556 | Observation of Dirac plasmons in a topological insulator
[28] | Raghu S, Chung S B, Qi X L and Zhang S C 2010 Phys. Rev. Lett. 104 116401 | Collective Modes of a Helical Liquid
[29] | Politano A, Chiarello G, Ghosh B, Sadhukhan K, Kuo C N, Lue C S, Pellegrini V and Agarwal A 2018 Phys. Rev. Lett. 121 086804 | 3D Dirac Plasmons in the Type-II Dirac Semimetal
[30] | Bill A, Morawitz H and Kresin V 2003 Phys. Rev. B 68 144519 | Electronic collective modes and superconductivity in layered conductors
[31] | Brout R 1957 Phys. Rev. 108 515 | Correlation Energy of a High-Density Gas: Plasma Coordinates
[32] | Efimkin D K, Lozovik Y E and Sokolik A A 2012 Nanoscale Res. Lett. 7 163 | Collective excitations on a surface of topological insulator
[33] | Kukushkin I, Smet J, Mikhailov S A, Kulakovskii D, Von Klitzing K and Wegscheider W 2003 Phys. Rev. Lett. 90 156801 | Observation of Retardation Effects in the Spectrum of Two-Dimensional Plasmons
[34] | Gruner T and Welsch D G 1996 Phys. Rev. A 53 1818 | Green-function approach to the radiation-field quantization for homogeneous and inhomogeneous Kramers-Kronig dielectrics
[35] | Stauber T and Gómez-Santos G 2010 Phys. Rev. B 82 155412 | Dynamical current-current correlation of the hexagonal lattice and graphene
[36] | Scholz A and Schliemann J 2011 Phys. Rev. B 83 235409 | Dynamical current-current susceptibility of gapped graphene