[1] | Anderson P W 1987 Science 235 1196 | The Resonating Valence Bond State in La2CuO4 and Superconductivity
[2] | Zhang F C and Rice T M 1988 Phys. Rev. B 37 3759 | Effective Hamiltonian for the superconducting Cu oxides
[3] | Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17 | Doping a Mott insulator: Physics of high-temperature superconductivity
[4] | Baskaran G, Zou Z and Anderson P W 1987 Solid State Commun. 63 973 | The resonating valence bond state and high-Tc superconductivity — A mean field theory
[5] | Gros C 1988 Phys. Rev. B 38 931 | Superconductivity in correlated wave functions
[6] | Kotliar G and Liu J 1988 Phys. Rev. B 38 5142 | Superexchange mechanism and d -wave superconductivity
[7] | Wang Q H, Wang Z D, Chen Y and Zhang F C 2006 Phys. Rev. B 73 092507 | Unrestricted renormalized mean field theory of strongly correlated electron systems
[8] | Affleck I, Zou Z, Hsu T and Anderson P W 1988 Phys. Rev. B 38 745 | SU(2) gauge symmetry of the large- limit of the Hubbard model
[9] | Wen X G 2002 Phys. Rev. B 65 165113 | Quantum orders and symmetric spin liquids
[10] | Wen X G 2004 Quantum Field Theory of Many Body Systems (New York: Oxford University Press) |
[11] | Piazza B D, Mourigal M, Christensen N B, Nilsen G J, Tregenna-Piggott P, Perring T G, Enderle M, McMorrow D F, Ivanov D A and Ronnow H M 2015 Nat. Phys. 11 62 | Fractional excitations in the square-lattice quantum antiferromagnet
[12] | Headings N S, Hayden S M, Coldea R and Perring T G 2010 Phys. Rev. Lett. 105 247001 | Anomalous High-Energy Spin Excitations in the High- Superconductor-Parent Antiferromagnet
[13] | Shao H, Qin Y Q, Capponi S, Chesi S, Meng Z Y and Sandvik A W 2017 Phys. Rev. X 7 041072 | Nearly Deconfined Spinon Excitations in the Square-Lattice Spin- Heisenberg Antiferromagnet
[14] | Yu S L, Wang W, Dong Z Y, Yao Z J and Li J X 2018 Phys. Rev. B 98 134410 | Deconfinement of spinons in frustrated spin systems: Spectral perspective
[15] | Sandvik A W and Singh R R P 2001 Phys. Rev. Lett. 86 528 | High-Energy Magnon Dispersion and Multimagnon Continuum in the Two-Dimensional Heisenberg Antiferromagnet
[16] | Powalski M, Schmidt K and Uhrig G 2018 SciPost Phys. 4 001 | Mutually attracting spin waves in the square-lattice quantum antiferromagnet
[17] | Lu Y M, Xiang T and Lee D H 2014 Nat. Phys. 10 634 | Underdoped superconducting cuprates as topological superconductors
[18] | Gputa A and Sa D 2016 Eur. Phys. J. B 89 24 | Topological phase in a dx2−y2 + (p + ip) superconductor in presence of spin-density-wave
[19] | Liu Y H, Wang W S, Wang Q H, Zhang F C and Rice T M 2017 Phys. Rev. B 96 014522 | Transformation of the superconducting gap to an insulating pseudogap at a critical hole density in the cuprates
[20] | Shen K M, Yoshida T, Lu D H, Ronning F, Armitage N P et al 2004 Phys. Rev. B 69 054503 | Fully gapped single-particle excitations in lightly doped cuprates
[21] | Tanaka K, Lee W S, Lu D H, Fujimori A, Fujii T et al 2006 Science 314 1910 | Distinct Fermi-Momentum-Dependent Energy Gaps in Deeply Underdoped Bi2212
[22] | Vishik I M, Hashimoto M, He R H, Lee W S, Schmitt F, Lu D, Moore R G, Zhang C, Meevasana W, Sasagawa T, Uchida S, Fujita K, Ishida S, Ishikado M, Yoshida Y, Eisaki H, Hussain Z, Devereaux T P and Shen Z X 2012 Proc. Natl. Acad. Sci. USA 109 18332 | Phase competition in trisected superconducting dome
[23] | Peng Y, Meng J, Mou D, He J, Zhao L, Wu Y, Liu G, Dong X, He S, Zhang J, Wang X, Peng Q, Wang Z, Zhang S, Yang F, Chen C, Xu Z, Lee T K and Zhou X J 2013 Nat. Commun. 4 2459 | Disappearance of nodal gap across the insulator–superconductor transition in a copper-oxide superconductor
[24] | Razzoli E, Drachuck G, Keren A, Radovic M, Plumb N C, Chang J, Huang Y B, Ding H, Mesot J and Shi M 2013 Phys. Rev. Lett. 110 047004 | Evolution from a Nodeless Gap to -Wave in Underdoped
[25] | Read N and Green D 2000 Phys. Rev. B 61 10267 | Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect
[26] | Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 | Topological insulators and superconductors
[27] | Himeda A and Ogata M 1999 Phys. Rev. B 60 R9935 | Coexistence of superconductivity and antiferromagnetism in the two-dimensional model and numerical estimation of Gutzwiller factors
[28] | Himeda A, Kato T and Ogata M 2002 Phys. Rev. Lett. 88 117001 | Stripe States with Spatially Oscillating -Wave Superconductivity in the Two-Dimensional Model
[29] | Paramekanti A, Randeria M and Trivedi N 2001 Phys. Rev. Lett. 87 217002 | Projected Wave Functions and High Temperature Superconductivity
[30] | Paramekanti A, Randeria M and Trivedi N 2004 Phys. Rev. B 70 054504 | High- superconductors: A variational theory of the superconducting state
[31] | Tan F and Wang Q H 2008 Phys. Rev. Lett. 100 117004 | Two-Mode Variational Monte Carlo Study of Quasiparticle Excitations in Cuprate Superconductors
[32] | Edegger B, Muthukumar V N and Gros C 2007 Adv. Phys. 56 927 | Gutzwiller–RVB theory of high-temperature superconductivity: Results from renormalized mean-field theory and variational Monte Carlo calculations
[33] | Umrigar C J and Filippi C 2005 Phys. Rev. Lett. 94 150201 | Energy and Variance Optimization of Many-Body Wave Functions
[34] | Sorella S 2005 Phys. Rev. B 71 241103 | Wave function optimization in the variational Monte Carlo method
[35] | Morita S, Kaneko R and Imada M 2015 J. Phys. Soc. Jpn. 84 024720 | Quantum Spin Liquid in Spin 1/2 J 1 – J 2 Heisenberg Model on Square Lattice: Many-Variable Variational Monte Carlo Study Combined with Quantum-Number Projections
[36] | Yokoyama H and Shiba H 1987 J. Phys. Soc. Jpn. 56 1490 | Variational Monte-Carlo Studies of Hubbard Model. I
[37] | Lee T K and Feng S P 1988 Phys. Rev. B 38 11809 | Doping dependence of antiferromagnetism in Cu : A numerical study based on a resonating-valence-bond state
[38] | Liang S, Doucot B and Anderson P W 1988 Phys. Rev. Lett. 61 365 | Some New Variational Resonating-Valence-Bond-Type Wave Functions for the Spin-½ Antiferromagnetic Heisenberg Model on a Square Lattice
[39] | Weng Z Y, Zhou Y and Muthukumar V N 2005 Phys. Rev. B 72 014503 | Bosonic resonating valence bond wave function for doped Mott insulators
[40] | Trivedi N and Cepeley D M 1989 Phys. Rev. B 40 2737(R) | Green-function Monte Carlo study of quantum antiferromagnets
[41] | Sandvik A W 1997 Phys. Rev. B 56 11678 | Finite-size scaling of the ground-state parameters of the two-dimensional Heisenberg model