[1] | Cohen R W and Abeles B 1968 Phys. Rev. 168 444 | Superconductivity in Granular Aluminum Films
[2] | Bose S and Ayyub P 2014 Rep. Prog. Phys. 77 116503 | A review of finite size effects in quasi-zero dimensional superconductors
[3] | Watson J H P 1970 Phys. Rev. B 2 1282 | Transition Temperature of Superconducting Indium, Thallium, and Lead Grains
[4] | Eliashberg G 1960 Sov. Phys.-JETP 11 696 |
[5] | McMillan W 1968 Phys. Rev. 167 331 | Transition Temperature of Strong-Coupled Superconductors
[6] | Guo Y et al 2004 Science 306 1915 | Superconductivity Modulated by Quantum Size Effects
[7] | Eom D et al 2006 Phys. Rev. Lett. 96 027005 | Persistent Superconductivity in Ultrathin Pb Films: A Scanning Tunneling Spectroscopy Study
[8] | Bose S et al 2009 J. Phys.: Condens. Matter 21 205702 | Competing effects of surface phonon softening and quantum size effects on the superconducting properties of nanostructured Pb
[9] | Vlaic S et al 2017 Nat. Commun. 8 14549 | Superconducting parity effect across the Anderson limit
[10] | Anderson P W 1959 J. Phys. Chem. Solids 11 26 | Theory of dirty superconductors
[11] | Voisin C et al 2000 Phys. Rev. Lett. 85 2200 | Size-Dependent Electron-Electron Interactions in Metal Nanoparticles
[12] | Han M Y et al 2007 Phys. Rev. Lett. 98 206805 | Energy Band-Gap Engineering of Graphene Nanoribbons
[13] | Wang K et al 2009 Phys. Rev. Lett. 102 076801 | Pseudogap Mediated by Quantum-Size Effects in Lead Islands
[14] | Wang Q Y et al 2012 Chin. Phys. Lett. 29 037402 | Interface-Induced High-Temperature Superconductivity in Single Unit-Cell FeSe Films on SrTiO 3
[15] | Ginzburg V L 1964 Phys. Lett. 13 101 | On surface superconductivity
[16] | Cohen M H and Douglass D H 1967 Phys. Rev. Lett. 19 118 | Superconductive Pairing Across Electron Barriers
[17] | Dynes R C et al 1978 Phys. Rev. Lett. 41 1509 | Direct Measurement of Quasiparticle-Lifetime Broadening in a Strong-Coupled Superconductor
[18] | Kastner M A 1992 Rev. Mod. Phys. 64 849 | The single-electron transistor
[19] | Efros A and Shklovskii B 1975 J. Phys. C 8 L49 | Coulomb gap and low temperature conductivity of disordered systems
[20] | Butko V Y et al 2000 Phys. Rev. Lett. 84 1543 | Coulomb Gap: How a Metal Film Becomes an Insulator
[21] | Massey J G and Lee M 1995 Phys. Rev. Lett. 75 4266 | Direct Observation of the Coulomb Correlation Gap in a Nonmetallic Semiconductor, Si: B
[22] | Lindhard J 1954 K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 28 8 |
[23] | Liebsch A 1993 Phys. Rev. B 48 11317 | Surface-plasmon dispersion and size dependence of Mie resonance: Silver versus simple metals
[24] | Chen T et al 2012 Phys. Rev. B 86 045135 | Coulomb gap triptychs, effective charge, and hopping transport in periodic arrays of superconductor grains
[25] | Brun C et al 2012 Phys. Rev. Lett. 108 126802 | Dynamical Coulomb Blockade Observed in Nanosized Electrical Contacts
[26] | Bean C and Livingston J 1964 Phys. Rev. Lett. 12 14 | Surface Barrier in Type-II Superconductors
[27] | Nishio T et al 2008 Phys. Rev. Lett. 101 167001 | Superconducting Pb Island Nanostructures Studied by Scanning Tunneling Microscopy and Spectroscopy
[28] | Fischer Ø et al 2007 Rev. Mod. Phys. 79 353 | Scanning tunneling spectroscopy of high-temperature superconductors
[29] | Leavens C R and Fenton E W 1981 Phys. Rev. B 24 5086 | Superconductivity of small particles
[30] | Sacepe B et al 2010 Nat. Commun. 1 140 | Pseudogap in a thin film of a conventional superconductor
[31] | Bose S et al 2010 Nat. Mater. 9 550 | Observation of shell effects in superconducting nanoparticles of Sn