[1] | Kinchin G H and Pease R S 1955 Rep. Prog. Phys. 18 1 | The Displacement of Atoms in Solids by Radiation
[2] | Robinson M T and Torrens I M 1974 Phys. Rev. B 9 5008 | Computer simulation of atomic-displacement cascades in solids in the binary-collision approximation
[3] | Norgett M J, Robinson M T and Torrens I M 1975 Nucl. Eng. Des. 33 50 | A proposed method of calculating displacement dose rates
[4] | Nordlund K, Zinkle S J, Sand A E et al 2018 J. Nucl. Mater. 512 450 | Primary radiation damage: A review of current understanding and models
[5] | Averback R S and Merkle K L 1977 Phys. Rev. B 16 3860 | Radiation-annealing effects in energetic displacement cascades
[6] | Gao F, Bacon D J, Calder A F et al 1996 J. Nucl. Mater. 230 47 | Computer simulation study of cascade overlap effects in α-iron
[7] | Stoller R E and Guiriec S G 2004 J. Nucl. Mater. 329 1238 | Secondary factors influencing cascade damage formation
[8] | Nordlund K and Averback R S 1997 Phys. Rev. B 56 2421 | Point defect movement and annealing in collision cascades
[9] | Byggmästar J, Granberg F, Sand A E et al 2019 J. Phys.: Condens. Matter 31 245402 | Collision cascades overlapping with self-interstitial defect clusters in Fe and W
[10] | Granberg F, Byggmästar J and Nordlund K 2019 Eur. Phys. J. B 92 146 | Cascade overlap with vacancy-type defects in Fe
[11] | Fellman A, Sand A E, Byggmästar J et al 2019 J. Phys.: Condens. Matter 31 405402 | Radiation damage in tungsten from cascade overlap with voids and vacancy clusters
[12] | Byggmästar J, Granberg F and Nordlund K 2018 J. Nucl. Mater. 508 530 | Effects of the short-range repulsive potential on cascade damage in iron
[13] | Granberg F, Nordlund K, Ullah M W et al 2016 Phys. Rev. Lett. 116 135504 | Mechanism of Radiation Damage Reduction in Equiatomic Multicomponent Single Phase Alloys
[14] | Ullah M W, Aidhy D S, Zhang Y et al 2016 Acta Mater. 109 17 | Damage accumulation in ion-irradiated Ni-based concentrated solid-solution alloys
[15] | Odette G R and Lucas G E 2001 JOM 53 18 | Embrittlement of nuclear reactor pressure vessels
[16] | Domain C, Becquart C S and Malerba L 2004 J. Nucl. Mater. 335 121 | Simulation of radiation damage in Fe alloys: an object kinetic Monte Carlo approach
[17] | Jansson V and Malerba L 2013 J. Nucl. Mater. 443 274 | Simulation of the nanostructure evolution under irradiation in Fe–C alloys
[18] | Jourdan T and Crocombette J P 2018 Comput. Mater. Sci. 145 235 | On the transfer of cascades from primary damage codes to rate equation cluster dynamics and its relation to experiments
[19] | Malerba L, Marinica M C, Anento N et al 2010 J. Nucl. Mater. 406 19 | Comparison of empirical interatomic potentials for iron applied to radiation damage studies
[20] | De A, Domain C, Becquart C S et al 2018 J. Phys.: Condens. Matter 30 405701 | A model of defect cluster creation in fragmented cascades in metals based on morphological analysis
[21] | Plimpton S 1995 J. Comput. Phys. 117 1 | Fast Parallel Algorithms for Short-Range Molecular Dynamics
[22] | Fu C C, Torre J D, Willaime F et al 2004 Nat. Mater. 4 68 | Multiscale modelling of defect kinetics in irradiated iron
[23] | Takaki S, Fuss J, Kuglers H et al 1983 Radiat. Eff. 79 87 | The resistivity recovery of high purity and carbon doped iron following low temperature electron irradiation
[24] | Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 15012 | Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool
[25] | Nordlund K, Zinkle S J, Sand A E et al 2018 Nat. Commun. 9 1084 | Improving atomic displacement and replacement calculations with physically realistic damage models
[26] | Jansson V, Chiapetto M and Malerba L 2013 J. Nucl. Mater. 442 341 | The nanostructure evolution in Fe–C systems under irradiation at 560K
[27] | Sand A E, Byggmästar J, Zitting A et al 2018 J. Nucl. Mater. 511 64 | Defect structures and statistics in overlapping cascade damage in fusion-relevant bcc metals