Quantum Scars in Microwave Dielectric Photonic Graphene Billiards

Funds: Supported by the National Natural Science Foundation of China under Grant No. 11847067, the Natural Science Foundation of Shanxi Province under Grant No. 201801D221178, the Science and Technology Innovation Project of Shanxi Higher Education under Grant No. 2019L0648, and Taiyuan University of Science and Technology Scientific Research Initial Funding under Grant No. 20152044.
  • Received Date: October 30, 2019
  • Published Date: December 31, 2019
  • In the band structure of graphene, the dispersion relation is linear around a Dirac point at the corners of the Brillouin zone. The closed graphene system has proven to be the ideal model to investigate relativistic quantum chaos phenomena. The electromagnetic material photonic graphene (PG) and electronic graphene not only have the same structural symmetry, but also have the similar band structure. Thus, we consider a stadium shaped resonant cavity filled with PG to demonstrate the relativistic quantum chaos phenomenon by numerical simulation. It is interesting that the relativistic quantum scars not only are identified in the PG cavities, but also appear and disappear repeatedly. The wave vector difference between repetitive scars on the same orbit is analyzed and confirmed to follow the quantization rule. The exploration will not only demonstrate a visual simulation of relativistic quantum scars but also propose a physical system for observing valley-dependent relativistic quantum scars, which is helpful for further understanding of quantum chaos.
  • Article Text

  • [1]
    Mcdonald S W and Kaufman A N 1979 Phys. Rev. Lett. 42 1189 doi: 10.1103/PhysRevLett.42.1189}

    CrossRef Google Scholar

    [2]
    Mcdonald S W and Kaufman A N 1988 Phys. Rev. A 37 3067 doi: 10.1103/PhysRevA.37.3067}

    CrossRef Google Scholar

    [3]
    Heller E J 1984 Phys. Rev. Lett. 53 1515 doi: 10.1103/PhysRevLett.53.1515}

    CrossRef Google Scholar

    [4]
    Bogomolny E B 1988 Physica D 31 169 doi: 10.1016/0167-27898890075-9}

    CrossRef Google Scholar

    [5]
    Berry M 1989 Proc. R. Soc. A 423 219 doi: 10.1098/rspa.1989.0052}

    CrossRef Google Scholar

    [6]
    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 doi: 10.1103/RevModPhys.81.109}

    CrossRef Google Scholar

    [7]
    Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 doi: 10.1038/nmat1849}

    CrossRef Google Scholar

    [8]
    Beenakker C W J 2008 Rev. Mod. Phys. 80 1337 doi: 10.1103/RevModPhys.80.1337}

    CrossRef Google Scholar

    [9]
    Huang L, Lai Y C, Ferry D K, Goodnick M S and Akis R 2009 Phys. Rev. Lett. 103 054101 doi: 10.1103/PhysRevLett.103.054101}

    CrossRef Google Scholar

    [10]
    Cabosart D, Felten A, Reckinger N, Iordanescu A, Toussaint S, Faniel S and Hackens B 2017 Nano Lett. 17 1344 doi: 10.1021/acs.nanolett.6b03725}

    CrossRef Google Scholar

    [11]
    Ni X, Huang L, Lai Y C and Grebogi C 2012 Phys. Rev. E 86 016702 doi: 10.1103/PhysRevE.86.016702}

    CrossRef Google Scholar

    [12]
    Xu H Y, Huang L, Lai Y C and Grebogi C 2013 Phys. Rev. Lett. 110 064102 doi: 10.1103/PhysRevLett.110.064102}

    CrossRef Google Scholar

    [13]
    Ying L, Wang G L, Huang L and Lai Y C 2014 Phys. Rev. B 90 224301 doi: 10.1103/PhysRevB.90.224301}

    CrossRef Google Scholar

    [14]
    Yang R, Huang L, Lai Y C and Pecora M 2012 Appl. Phys. Lett. 100 093105 doi: 10.1063/1.3690046}

    CrossRef Google Scholar

    [15]
    Yang R, Huang L, Lai Y C, Grebogi C and Pecora L M 2013 Chaos 23 013125 doi: 10.1063/1.4790863}

    CrossRef Google Scholar

    [16]
    Wallace P R 1947 Phys. Rev. 71 622 doi: 10.1103/PhysRev.71.622}

    CrossRef Google Scholar

    [17]
    Bittner S, Dietz B, Miski-Oglu M, Oria Iriarte P, Richter A and Schäfer F 2010 Phys. Rev. B 82 014301 doi: 10.1103/PhysRevB.82.014301}

    CrossRef Google Scholar

    [18]
    Kuhl U, Barkhofen S, Tudorovskiy T, Stöckmann H J, Hossain T, de Forges de Parny L and Mortessagne F 2010 Phys. Rev. B 82 094308 doi: 10.1103/PhysRevB.82.094308}

    CrossRef Google Scholar

    [19]
    Bellec M, Kuhl U, Montambaux G, Montambaux G and Mortessagne F 2013 Phys. Rev. Lett. 110 033902 doi: 10.1103/PhysRevLett.110.033902}

    CrossRef Google Scholar

    [20]
    Bittner S, Dietz B, Miski-Oglu M and Richter A 2012 Phys. Rev. B 85 064301 doi: 10.1103/PhysRevB.85.064301}

    CrossRef Google Scholar

    [21]
    Wang X, Jiang H T, Yan C, Sun Y, Li Y H, Shi Y L and Chen H 2013 Europhys. Lett. 103 17003 doi: 10.1209/0295-5075/103/17003}

    CrossRef Google Scholar

    [22]
    Wang X, Jiang H T, Yan C, Deng F S, Sun Y, Li Y H, Shi Y L and Chen H 2014 Europhys. Lett. 108 14002 doi: 10.1209/0295-5075/108/14002}

    CrossRef Google Scholar

    [23]
    Wang X, Jiang H T, Li Y, Yan C, Deng F S, Sun Y, Li Y H, Shi Y L and Chen H 2015 Opt. Express 23 5126 doi: 10.1364/OE.23.005126}

    CrossRef Google Scholar

    [24]
    Zandbergen S R and De dood M J A 2010 Phys. Rev. Lett. 104 043903 doi: 10.1103/PhysRevLett.104.043903}

    CrossRef Google Scholar

    [25]
    Plotnik Y, Rechtsman M C, Song D, Heinrich M, Zeuner J M, Nolte S, Lumer Y, Malkova N, Xu J, Szameit A, Chen Z and Segev M 2014 Nat. Mater. 13 57 doi: 10.1038/nmat3783}

    CrossRef Google Scholar

    [26]
    Lai Y C, Xu H Y, Huang L and Grebogi C 2018 Chaos 28 052101 doi: 10.1063/1.5026904}

    CrossRef Google Scholar

    [27]
    Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S and Geim A K 2008 Science 320 356 doi: 10.1126/science.1154663}

    CrossRef Google Scholar

    [28]
    Miao F, Wijeratne S, Zhang Y, Coskun U C, Bao W and Lau C N 2007 Science 317 1530 doi: 10.1126/science.1144359}

    CrossRef Google Scholar

    [29]
    Huang L, Xu H Y, Grebogi C and Lai Y C 2018 Phys. Rep. 753 1 doi: 10.1016/j.physrep.2018.06.006}

    CrossRef Google Scholar

    [30]
    Dietz B, Klaus T, Miski-Oglu M and Richter A 2015 Phys. Rev. B 91 035411 doi: 10.1103/PhysRevB.91.035411}

    CrossRef Google Scholar

    [31]
    Dietz B and Richter A 2015 Chaos 25 097601 doi: 10.1063/1.4915527}

    CrossRef Google Scholar

    [32]
    Dietz B, Klaus T, Miski-Oglu M, Richer A, Wunderle M and Bouazza C 2016 Phys. Rev. Lett. 116 023901 doi: 10.1103/PhysRevLett.116.023901}

    CrossRef Google Scholar

    [33]
    Dietz B and Richter A 2019 Phys. Scr. 94 014002 doi: 10.1088/1402-4896/aaec96}

    CrossRef Google Scholar

    [34]
    Song M Y, Li Z Y, Xu H Y, Huang L and Hai Y C 2019 Phys. Rev. Res. 1 033008 doi: 10.1103/PhysRevResearch.1.033008}

    CrossRef Google Scholar

    [35]
    Zhang H F 2018 Chin. Phys. B 27 014205 doi: 10.1088/1674-1056/27/1/014205}

    CrossRef Google Scholar

    [36]
    Deng F S, Sun Y, Wang X, Xue R, Li Y, Jiang H T, Shi Y L, Chang Kai and Chen H 2014 Opt. Express 22 23605 doi: 10.1364/OE.22.023605}

    CrossRef Google Scholar

    [37]
    Gutzwiller M C 1971 J. Math. Phys. 12 343 doi: 10.1063/1.1665596}

    CrossRef Google Scholar

    [38]
    Wang C Z, Huang L and Chang K 2017 New J. Phys. 19 013018 doi: 10.1088/1367-2630/aa50bf}

    CrossRef Google Scholar

    [39]
    Berry M V and Mondragon R J 1987 Proc. R. Soc. A 412 53 doi: 10.1098/rspa.1987.0080}

    CrossRef Google Scholar

  • Related Articles

    [1]Yun Lu, Dong Zhang, Kai Chang. Monolayer Bismuth Ferrite: Topological Antiferromagnetic Metal with Bimeron Spin Textures [J]. Chin. Phys. Lett., 2025, 42(5): 057402. doi: 10.1088/0256-307X/42/5/057402
    [2]XIAO Xia, SHAN Xing-Meng, LIU Ya-Liang. Evaluating of Adhesion Property of ULSI Interconnect Films by the Surface Acoustic Waves [J]. Chin. Phys. Lett., 2010, 27(1): 018502. doi: 10.1088/0256-307X/27/1/018502
    [3]AN Hai-Long, LIU Yu-Zhi, ZHANG Su-Hua, ZHAN Yong, ZHANG Hai-Lin. Properties of Hydrated Alkali Metals Aimed at the Ion Channel Selectivity [J]. Chin. Phys. Lett., 2008, 25(9): 3165-3168.
    [4]LIU Jian-Lin, FENG Xi-Qiao. Capillary Adhesion of Microbeams: Finite Deformation Analysis [J]. Chin. Phys. Lett., 2007, 24(8): 2349-2352.
    [5]CHEN Ming, LUO Hong-Wei, ZHANG Zheng-Xuan, ZHANG En-Xia, YANG Hui, TIAN Hao, WANG Ru, YU Wen-Jie. Ionizing Dose Effect of Thermal Oxides Implanted with Si+ Ions [J]. Chin. Phys. Lett., 2007, 24(6): 1775-1777.
    [6]WANG Yong, JIA Hai-Qiang, MAI Zhen-Hong, JIA Quan-Jie, JIANG Xiao-Ming. Investigation of Microstructures of AlAs Oxides Before and After Oxidation [J]. Chin. Phys. Lett., 2004, 21(6): 1128-1130.
    [7]WEI Zheng, ZHAO Ya-Pu. Experimental Investigation of the Velocity Effect on Adhesion Forces with an Atomic Force Microscope [J]. Chin. Phys. Lett., 2004, 21(4): 616-619.
    [8]WEN Hai-Hu, YANG Hai-Peng, LU Xi-Feng, YAN Jing. Superconductivity at 31 K in Alkaline Metal-Doped Cobalt Oxides [J]. Chin. Phys. Lett., 2003, 20(5): 725-728.
    [9]QIAO Rongwen, ZHAO Zhongxian. Relationship between Tc and σ J in Doped Superconducting Copper Oxides [J]. Chin. Phys. Lett., 1991, 8(6): 307-309.
    [10]SUN Jiansan, QI Zhenzhong, LIU Ling, YAO Weiguo. AN EXPERIMENTAL INVESTIGATION ON ADHESION OF IRON IN CONTACT WITH IRON AND COPPER [J]. Chin. Phys. Lett., 1987, 4(5): 209-212.

Catalog

    Article views (608) PDF downloads (434) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return