Quantum Scars in Microwave Dielectric Photonic Graphene Billiards
-
Abstract
In the band structure of graphene, the dispersion relation is linear around a Dirac point at the corners of the Brillouin zone. The closed graphene system has proven to be the ideal model to investigate relativistic quantum chaos phenomena. The electromagnetic material photonic graphene (PG) and electronic graphene not only have the same structural symmetry, but also have the similar band structure. Thus, we consider a stadium shaped resonant cavity filled with PG to demonstrate the relativistic quantum chaos phenomenon by numerical simulation. It is interesting that the relativistic quantum scars not only are identified in the PG cavities, but also appear and disappear repeatedly. The wave vector difference between repetitive scars on the same orbit is analyzed and confirmed to follow the quantization rule. The exploration will not only demonstrate a visual simulation of relativistic quantum scars but also propose a physical system for observing valley-dependent relativistic quantum scars, which is helpful for further understanding of quantum chaos. -
-
References
[1] Mcdonald S W and Kaufman A N 1979 Phys. Rev. Lett. 42 1189 doi: 10.1103/PhysRevLett.42.1189}[2] Mcdonald S W and Kaufman A N 1988 Phys. Rev. A 37 3067 doi: 10.1103/PhysRevA.37.3067}[3] Heller E J 1984 Phys. Rev. Lett. 53 1515 doi: 10.1103/PhysRevLett.53.1515}[4] Bogomolny E B 1988 Physica D 31 169 doi: 10.1016/0167-27898890075-9}[5] Berry M 1989 Proc. R. Soc. A 423 219 doi: 10.1098/rspa.1989.0052}[6] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 doi: 10.1103/RevModPhys.81.109}[7] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 doi: 10.1038/nmat1849}[8] Beenakker C W J 2008 Rev. Mod. Phys. 80 1337 doi: 10.1103/RevModPhys.80.1337}[9] Huang L, Lai Y C, Ferry D K, Goodnick M S and Akis R 2009 Phys. Rev. Lett. 103 054101 doi: 10.1103/PhysRevLett.103.054101}[10] Cabosart D, Felten A, Reckinger N, Iordanescu A, Toussaint S, Faniel S and Hackens B 2017 Nano Lett. 17 1344 doi: 10.1021/acs.nanolett.6b03725}[11] Ni X, Huang L, Lai Y C and Grebogi C 2012 Phys. Rev. E 86 016702 doi: 10.1103/PhysRevE.86.016702}[12] Xu H Y, Huang L, Lai Y C and Grebogi C 2013 Phys. Rev. Lett. 110 064102 doi: 10.1103/PhysRevLett.110.064102}[13] Ying L, Wang G L, Huang L and Lai Y C 2014 Phys. Rev. B 90 224301 doi: 10.1103/PhysRevB.90.224301}[14] Yang R, Huang L, Lai Y C and Pecora M 2012 Appl. Phys. Lett. 100 093105 doi: 10.1063/1.3690046}[15] Yang R, Huang L, Lai Y C, Grebogi C and Pecora L M 2013 Chaos 23 013125 doi: 10.1063/1.4790863}[16] Wallace P R 1947 Phys. Rev. 71 622 doi: 10.1103/PhysRev.71.622}[17] Bittner S, Dietz B, Miski-Oglu M, Oria Iriarte P, Richter A and Schäfer F 2010 Phys. Rev. B 82 014301 doi: 10.1103/PhysRevB.82.014301}[18] Kuhl U, Barkhofen S, Tudorovskiy T, Stöckmann H J, Hossain T, de Forges de Parny L and Mortessagne F 2010 Phys. Rev. B 82 094308 doi: 10.1103/PhysRevB.82.094308}[19] Bellec M, Kuhl U, Montambaux G, Montambaux G and Mortessagne F 2013 Phys. Rev. Lett. 110 033902 doi: 10.1103/PhysRevLett.110.033902}[20] Bittner S, Dietz B, Miski-Oglu M and Richter A 2012 Phys. Rev. B 85 064301 doi: 10.1103/PhysRevB.85.064301}[21] Wang X, Jiang H T, Yan C, Sun Y, Li Y H, Shi Y L and Chen H 2013 Europhys. Lett. 103 17003 doi: 10.1209/0295-5075/103/17003}[22] Wang X, Jiang H T, Yan C, Deng F S, Sun Y, Li Y H, Shi Y L and Chen H 2014 Europhys. Lett. 108 14002 doi: 10.1209/0295-5075/108/14002}[23] Wang X, Jiang H T, Li Y, Yan C, Deng F S, Sun Y, Li Y H, Shi Y L and Chen H 2015 Opt. Express 23 5126 doi: 10.1364/OE.23.005126}[24] Zandbergen S R and De dood M J A 2010 Phys. Rev. Lett. 104 043903 doi: 10.1103/PhysRevLett.104.043903}[25] Plotnik Y, Rechtsman M C, Song D, Heinrich M, Zeuner J M, Nolte S, Lumer Y, Malkova N, Xu J, Szameit A, Chen Z and Segev M 2014 Nat. Mater. 13 57 doi: 10.1038/nmat3783}[26] Lai Y C, Xu H Y, Huang L and Grebogi C 2018 Chaos 28 052101 doi: 10.1063/1.5026904}[27] Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S and Geim A K 2008 Science 320 356 doi: 10.1126/science.1154663}[28] Miao F, Wijeratne S, Zhang Y, Coskun U C, Bao W and Lau C N 2007 Science 317 1530 doi: 10.1126/science.1144359}[29] Huang L, Xu H Y, Grebogi C and Lai Y C 2018 Phys. Rep. 753 1 doi: 10.1016/j.physrep.2018.06.006}[30] Dietz B, Klaus T, Miski-Oglu M and Richter A 2015 Phys. Rev. B 91 035411 doi: 10.1103/PhysRevB.91.035411}[31] Dietz B and Richter A 2015 Chaos 25 097601 doi: 10.1063/1.4915527}[32] Dietz B, Klaus T, Miski-Oglu M, Richer A, Wunderle M and Bouazza C 2016 Phys. Rev. Lett. 116 023901 doi: 10.1103/PhysRevLett.116.023901}[33] Dietz B and Richter A 2019 Phys. Scr. 94 014002 doi: 10.1088/1402-4896/aaec96}[34] Song M Y, Li Z Y, Xu H Y, Huang L and Hai Y C 2019 Phys. Rev. Res. 1 033008 doi: 10.1103/PhysRevResearch.1.033008}[35] Zhang H F 2018 Chin. Phys. B 27 014205 doi: 10.1088/1674-1056/27/1/014205}[36] Deng F S, Sun Y, Wang X, Xue R, Li Y, Jiang H T, Shi Y L, Chang Kai and Chen H 2014 Opt. Express 22 23605 doi: 10.1364/OE.22.023605}[37] Gutzwiller M C 1971 J. Math. Phys. 12 343 doi: 10.1063/1.1665596}[38] Wang C Z, Huang L and Chang K 2017 New J. Phys. 19 013018 doi: 10.1088/1367-2630/aa50bf}[39] Berry M V and Mondragon R J 1987 Proc. R. Soc. A 412 53 doi: 10.1098/rspa.1987.0080} -
Related Articles
[1] Yun Lu, Dong Zhang, Kai Chang. Monolayer Bismuth Ferrite: Topological Antiferromagnetic Metal with Bimeron Spin Textures [J]. Chin. Phys. Lett., 2025, 42(5): 057402. doi: 10.1088/0256-307X/42/5/057402 [2] XIAO Xia, SHAN Xing-Meng, LIU Ya-Liang. Evaluating of Adhesion Property of ULSI Interconnect Films by the Surface Acoustic Waves [J]. Chin. Phys. Lett., 2010, 27(1): 018502. doi: 10.1088/0256-307X/27/1/018502 [3] AN Hai-Long, LIU Yu-Zhi, ZHANG Su-Hua, ZHAN Yong, ZHANG Hai-Lin. Properties of Hydrated Alkali Metals Aimed at the Ion Channel Selectivity [J]. Chin. Phys. Lett., 2008, 25(9): 3165-3168. [4] LIU Jian-Lin, FENG Xi-Qiao. Capillary Adhesion of Microbeams: Finite Deformation Analysis [J]. Chin. Phys. Lett., 2007, 24(8): 2349-2352. [5] CHEN Ming, LUO Hong-Wei, ZHANG Zheng-Xuan, ZHANG En-Xia, YANG Hui, TIAN Hao, WANG Ru, YU Wen-Jie. Ionizing Dose Effect of Thermal Oxides Implanted with Si+ Ions [J]. Chin. Phys. Lett., 2007, 24(6): 1775-1777. [6] WANG Yong, JIA Hai-Qiang, MAI Zhen-Hong, JIA Quan-Jie, JIANG Xiao-Ming. Investigation of Microstructures of AlAs Oxides Before and After Oxidation [J]. Chin. Phys. Lett., 2004, 21(6): 1128-1130. [7] WEI Zheng, ZHAO Ya-Pu. Experimental Investigation of the Velocity Effect on Adhesion Forces with an Atomic Force Microscope [J]. Chin. Phys. Lett., 2004, 21(4): 616-619. [8] WEN Hai-Hu, YANG Hai-Peng, LU Xi-Feng, YAN Jing. Superconductivity at 31 K in Alkaline Metal-Doped Cobalt Oxides [J]. Chin. Phys. Lett., 2003, 20(5): 725-728. [9] QIAO Rongwen, ZHAO Zhongxian. Relationship between Tc and σ J in Doped Superconducting Copper Oxides [J]. Chin. Phys. Lett., 1991, 8(6): 307-309. [10] SUN Jiansan, QI Zhenzhong, LIU Ling, YAO Weiguo. AN EXPERIMENTAL INVESTIGATION ON ADHESION OF IRON IN CONTACT WITH IRON AND COPPER [J]. Chin. Phys. Lett., 1987, 4(5): 209-212.