[1] | Mcdonald S W and Kaufman A N 1979 Phys. Rev. Lett. 42 1189 | Spectrum and Eigenfunctions for a Hamiltonian with Stochastic Trajectories
[2] | Mcdonald S W and Kaufman A N 1988 Phys. Rev. A 37 3067 | Wave chaos in the stadium: Statistical properties of short-wave solutions of the Helmholtz equation
[3] | Heller E J 1984 Phys. Rev. Lett. 53 1515 | Bound-State Eigenfunctions of Classically Chaotic Hamiltonian Systems: Scars of Periodic Orbits
[4] | Bogomolny E B 1988 Physica D 31 169 | Smoothed wave functions of chaotic quantum systems
[5] | Berry M 1989 Proc. R. Soc. A 423 219 | Quantum Scars of Classical Closed Orbits in Phase Space
[6] | Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 | The electronic properties of graphene
[7] | Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 | The rise of graphene
[8] | Beenakker C W J 2008 Rev. Mod. Phys. 80 1337 | Colloquium : Andreev reflection and Klein tunneling in graphene
[9] | Huang L, Lai Y C, Ferry D K, Goodnick M S and Akis R 2009 Phys. Rev. Lett. 103 054101 | Relativistic Quantum Scars
[10] | Cabosart D, Felten A, Reckinger N, Iordanescu A, Toussaint S, Faniel S and Hackens B 2017 Nano Lett. 17 1344 | Recurrent Quantum Scars in a Mesoscopic Graphene Ring
[11] | Ni X, Huang L, Lai Y C and Grebogi C 2012 Phys. Rev. E 86 016702 | Scarring of Dirac fermions in chaotic billiards
[12] | Xu H Y, Huang L, Lai Y C and Grebogi C 2013 Phys. Rev. Lett. 110 064102 | Chiral Scars in Chaotic Dirac Fermion Systems
[13] | Ying L, Wang G L, Huang L and Lai Y C 2014 Phys. Rev. B 90 224301 | Quantum chaotic tunneling in graphene systems with electron-electron interactions
[14] | Yang R, Huang L, Lai Y C and Pecora M 2012 Appl. Phys. Lett. 100 093105 | Modulating quantum transport by transient chaos
[15] | Yang R, Huang L, Lai Y C, Grebogi C and Pecora L M 2013 Chaos 23 013125 | Harnessing quantum transport by transient chaos
[16] | Wallace P R 1947 Phys. Rev. 71 622 | The Band Theory of Graphite
[17] | Bittner S, Dietz B, Miski-Oglu M, Oria Iriarte P, Richter A and Schäfer F 2010 Phys. Rev. B 82 014301 | Observation of a Dirac point in microwave experiments with a photonic crystal modeling graphene
[18] | Kuhl U, Barkhofen S, Tudorovskiy T, Stöckmann H J, Hossain T, de Forges de Parny L and Mortessagne F 2010 Phys. Rev. B 82 094308 | Dirac point and edge states in a microwave realization of tight-binding graphene-like structures
[19] | Bellec M, Kuhl U, Montambaux G, Montambaux G and Mortessagne F 2013 Phys. Rev. Lett. 110 033902 | Topological Transition of Dirac Points in a Microwave Experiment
[20] | Bittner S, Dietz B, Miski-Oglu M and Richter A 2012 Phys. Rev. B 85 064301 | Extremal transmission through a microwave photonic crystal and the observation of edge states in a rectangular Dirac billiard
[21] | Wang X, Jiang H T, Yan C, Sun Y, Li Y H, Shi Y L and Chen H 2013 Europhys. Lett. 103 17003 | Anomalous transmission of disordered photonic graphenes at the Dirac point
[22] | Wang X, Jiang H T, Yan C, Deng F S, Sun Y, Li Y H, Shi Y L and Chen H 2014 Europhys. Lett. 108 14002 | Transmission properties near Dirac-like point in two-dimensional dielectric photonic crystals
[23] | Wang X, Jiang H T, Li Y, Yan C, Deng F S, Sun Y, Li Y H, Shi Y L and Chen H 2015 Opt. Express 23 5126 | Transport properties of disordered photonic crystals around a Dirac-like point
[24] | Zandbergen S R and De dood M J A 2010 Phys. Rev. Lett. 104 043903 | Experimental Observation of Strong Edge Effects on the Pseudodiffusive Transport of Light in Photonic Graphene
[25] | Plotnik Y, Rechtsman M C, Song D, Heinrich M, Zeuner J M, Nolte S, Lumer Y, Malkova N, Xu J, Szameit A, Chen Z and Segev M 2014 Nat. Mater. 13 57 | Observation of unconventional edge states in ‘photonic graphene’
[26] | Lai Y C, Xu H Y, Huang L and Grebogi C 2018 Chaos 28 052101 | Relativistic quantum chaos—An emergent interdisciplinary field
[27] | Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S and Geim A K 2008 Science 320 356 | Chaotic Dirac Billiard in Graphene Quantum Dots
[28] | Miao F, Wijeratne S, Zhang Y, Coskun U C, Bao W and Lau C N 2007 Science 317 1530 | Phase-Coherent Transport in Graphene Quantum Billiards
[29] | Huang L, Xu H Y, Grebogi C and Lai Y C 2018 Phys. Rep. 753 1 | Relativistic quantum chaos
[30] | Dietz B, Klaus T, Miski-Oglu M and Richter A 2015 Phys. Rev. B 91 035411 | Spectral properties of superconducting microwave photonic crystals modeling Dirac billiards
[31] | Dietz B and Richter A 2015 Chaos 25 097601 | Quantum and wave dynamical chaos in superconducting microwave billiards
[32] | Dietz B, Klaus T, Miski-Oglu M, Richer A, Wunderle M and Bouazza C 2016 Phys. Rev. Lett. 116 023901 | Spectral Properties of Dirac Billiards at the van Hove Singularities
[33] | Dietz B and Richter A 2019 Phys. Scr. 94 014002 | From graphene to fullerene: experiments with microwave photonic crystals
[34] | Song M Y, Li Z Y, Xu H Y, Huang L and Hai Y C 2019 Phys. Rev. Res. 1 033008 | Quantization of massive Dirac billiards and unification of nonrelativistic and relativistic chiral quantum scars
[35] | Zhang H F 2018 Chin. Phys. B 27 014205 | Comment on “Band gaps structure and semi-Dirac point of two-dimensional function photonic crystals” by Si-Qi Zhang et al .
[36] | Deng F S, Sun Y, Wang X, Xue R, Li Y, Jiang H T, Shi Y L, Chang Kai and Chen H 2014 Opt. Express 22 23605 | Observation of valley-dependent beams in photonic graphene
[37] | Gutzwiller M C 1971 J. Math. Phys. 12 343 | Periodic Orbits and Classical Quantization Conditions
[38] | Wang C Z, Huang L and Chang K 2017 New J. Phys. 19 013018 | Scars in Dirac fermion systems: the influence of an Aharonov–Bohm flux
[39] | Berry M V and Mondragon R J 1987 Proc. R. Soc. A 412 53 | Neutrino Billiards: Time-Reversal Symmetry-Breaking Without Magnetic Fields