[1] | Wernsdorfer W et al 1997 Phys. Rev. Lett. 78 1791 | Experimental Evidence of the Néel-Brown Model of Magnetization Reversal
[2] | Fukushima H, Nakatani Y and Hayashi N 1998 IEEE Trans. Magn. 34 193 | Volume average demagnetizing tensor of rectangular prisms
[3] | Wei D 2012 Micromagnetics and Recording Materials (Heidelberg: Springer) |
[4] | Yuan S W and Bertram H N 1992 IEEE Trans. Magn. 28 2031 | Fast adaptive algorithms for micromagnetics
[5] | Serpico C and Visone C 1998 IEEE Trans. Magn. 34 623 | Magnetic hysteresis modeling via feed-forward neural networks
[6] | Alam M, Ali A, Sultan M S et al 2018 Prog. Electromagn. Res. Symp. (Toyama Jpn. 1–4 August 2018) p 291 |
[7] | Ch'ng K, Vazquez N and Khatami E 2018 Phys. Rev. E 97 013306 | Unsupervised machine learning account of magnetic transitions in the Hubbard model
[8] | Carrasquilla J and Melko R G 2017 Nat. Phys. 13 431 | Machine learning phases of matter
[9] | Roy U, Pramanik T, Roy S et al 2017 75th Annual Device Research Conference (South Bend, USA 25–28 June 2017) |
[10] | Tannous C and Gieraltowski J 2008 Eur. J. Phys. 29 475 | The Stoner–Wohlfarth model of ferromagnetism
[11] | Gao K Z, Boerner E D and Bertram H N 2003 J. Appl. Phys. 93 6549 | Energy surface model of single particle reversal in sub-Stoner–Wohlfarth switching fields
[12] | Russell S J and Norvig P 2010 Artificial Intelligence: A Modern Approach 3rd edn (Malaysia: Pearson) |
[13] | Liaw A and Wiener M 2002 R. News 2 18 |
[14] | Suykens J A K and Vandewalle J 1999 Neural Process. Lett. 9 293 | Least Squares Support Vector Machine Classifiers
[15] | Haykin S 1994 Neural networks (New York: Prentice Hall) |
[16] | Pedregosa F, Varoquaux G, Gramfort A et al 2011 J. Mach. Learn. Res. 12 2825 |
[17] | Abadi M, Barham P, Chen J et al 12th USENIX Symposium on Operating Systems Design, Implementation (Savannah and USA 2–4 November 2016) 16 265 |
[18] | Huang J and Ling C X 2005 IEEE Trans. Knowl. Data Eng. 17 299 | Using AUC and accuracy in evaluating learning algorithms