Comparison of ITG and TEM Microturbulence in DIII–D Tokamak

Funds: Supported by the National MCF Energy R&D Program under Grant Nos 2018YFE0304100, 2017YFE0301300 and 2018YFE0311300, the National Natural Science Foundation of China under Grant Nos 11675257, 11675256, 11875067, 11835016 and 11705275, the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB16010300, the Key Research Program of Frontier Science of the Chinese Academy of Sciences under Grant No QYZDJ-SSW-SYS016, and the External Cooperation Program of the Chinese Academy of Sciences under Grant No 112111KYSB20160039.
  • Received Date: April 04, 2019
  • Published Date: July 31, 2019
  • Microturbulence excited by ion temperature gradient (ITG)-dominant and trapped electron mode (TEM)-dominant instabilities is compared in the fusion plasmas using gyrokinetic simulations based on the realistic equilibrium data from DIII–D discharges. Collisions make a difference between two plasmas and give rise to similar results to those found in previous research experiments [Chin. Phys. Lett. 35 (2018) 105201]. The mode structures and frequency spectrum of the most unstable modes characterized by the ITG-dominant and TEM-dominant instabilities are excited in the lower and higher Te plasmas in the linear simulations. In the nonlinear simulations, contour plots of the perturbed potential are shown in the saturated stage, with the radial correlation lengths being microscopic on the order of the ion thermal gyroradius ρi in both the ITG and the TEM microturbulences. The dominant mode wavelengths of the perturbed potential increase when evolving from linear to nonlinear stages in both simulations, with the fluctuation energy spreading from the linearly dominant modes to the nonlinearly dominant modes. The radial correlation lengths are about 4ρi and the electron density fluctuation intensities are about 0.85% in the nonlinear saturated stage, which are in agreement with the experimental results.
  • Article Text

  • [1]
    Lin Z and Hahm T S 2004 Phys. Plasmas 11 1099 doi: 10.1063/1.1647136}

    CrossRef Google Scholar

    [2]
    Xiao Y and Lin Z 2009 Phys. Rev. Lett. 103 085004 doi: 10.1103/PhysRevLett.103.085004}

    CrossRef Google Scholar

    [3]
    Dimit A M, Bateman G, Beer M A, Cohen B I, Dorl, W, Hammett G W, Kim C, Kinsey J E, Kotschenreuther M, Kritz A H, Lao L L, Mandrekas J, Nevins W M, Parker S E, Redd A J, Shumaker D E, Sydora R and Weiland J 2000 Phys. Plasmas 7 969 doi: 10.1063/1.873896}

    CrossRef Google Scholar

    [4]
    Ryter F, Angioni C, Peeters A, Leuterer F, Fahrbach H U and Suttrop W 2005 Phys. Rev. Lett. 95 085001 doi: 10.1103/PhysRevLett.95.085001}

    CrossRef Google Scholar

    [5]
    Vlad M, Spineanu F, Itoh S I, Yagi M and Itoh K 2005 Plasma Phys. Control. Fusion 47 1015 doi: 10.1088/0741-3335/47/7/004}

    CrossRef Google Scholar

    [6]
    Chen L 1999 J. Geophys. Res.: Space Phys. 104 2421 doi: 10.1029/1998JA900051}

    CrossRef Google Scholar

    [7]
    Zhang W, Lin Z and Chen L 2008 Phys. Rev. Lett. 101 095001 doi: 10.1103/PhysRevLett.101.095001}

    CrossRef Google Scholar

    [8]
    Chowdhury J, Wang W, Ethier S, Manickam J and Ganesh R 2011 Phys. Plasmas 18 112510 doi: 10.1063/1.3660405}

    CrossRef Google Scholar

    [9]
    Günter S, Conway G et al. 2007 Nucl. Fusion 47 920 doi: 10.1088/0029-5515/47/8/025}

    CrossRef Google Scholar

    [10]
    Heidbrink W W, Park J M, Murakami M, Petty C C, Holcomb C and van Zeeland M A 2009 Phys. Rev. Lett. 103 175001 doi: 10.1103/PhysRevLett.103.175001}

    CrossRef Google Scholar

    [11]
    Lewandowski J L V, Rewoldt G, Ethier S, Lee W W and Lin Z 2006 Phys. Plasmas 13 072306 doi: 10.1063/1.2221931}

    CrossRef Google Scholar

    [12]
    Rewoldt G, Lin Z and Idomura Y 2007 Comput. Phys. Commun. 177 775 doi: 10.1016/j.cpc.2007.06.017}

    CrossRef Google Scholar

    [13]
    Lang J Y, Parker S E and Chen Y 2008 Phys. Plasmas 15 055907 doi: 10.1063/1.2884036}

    CrossRef Google Scholar

    [14]
    Carreras B A 1997 IEEE Trans. Plasma Sci. 25 1281 doi: 10.1109/27.650902}

    CrossRef Google Scholar

    [15]
    Rhodes T L, Peebles W A, van Zeeland M A et al. 2007 Phys. Plasmas 14 056117 doi: 10.1063/1.2714019}

    CrossRef Google Scholar

    [16]
    Conway G D, Angioni C, Dux R, Ryter F, Peeters A G, Schirmer J, Troester C et al. 2006 Nucl. Fusion 46 S799 doi: 10.1088/0029-5515/46/9/S15}

    CrossRef Google Scholar

    [17]
    Xiao Y, Holod I, Zhang W, Klasky S and Lin Z 2010 Phys. Plasmas 17 022302 doi: 10.1063/1.3302504}

    CrossRef Google Scholar

    [18]
    Merz F and Jenko F 2010 Nucl. Fusion 50 054005 doi: 10.1088/0029-5515/50/5/054005}

    CrossRef Google Scholar

    [19]
    Dannert T and Jenko F 2005 Phys. Plasmas 12 072309 doi: 10.1063/1.1947447}

    CrossRef Google Scholar

    [20]
    Lang J, Chen Y and Parker S E 2007 Phys. Plasmas 14 082315 doi: 10.1063/1.2771141}

    CrossRef Google Scholar

    [21]
    Lin Z, Hahm T, Lee W, Tang W and Diamond P 1999 Phys. Rev. Lett. 83 3645 doi: 10.1103/PhysRevLett.83.3645}

    CrossRef Google Scholar

    [22]
    Conway G D 2008 Plasma Phys. Control. Fusion 50 124026 doi: 10.1088/0741-3335/50/12/124026}

    CrossRef Google Scholar

    [23]
    Hu W, Feng H Y and Dong C 2018 Chin. Phys. Lett. 35 105201 doi: 10.1088/0256-307X/35/10/105201}

    CrossRef Google Scholar

    [24]
    Pace D C, Austin M E, Bass E M, Budny R V, Heidbrink W W, Hillesheim J C, Holcomb C T, Gorelenkova M, Grierson B A, McCune D C, McKee G R, Muscatello C M, Park J M, Petty C C, Rhodes T L, Staebler G M, Suzuki T, Van Zeel, M A, Waltz R E, Wang G, White A E, Yan Z, Yuan X and Zhu Y B 2013 Phys. Plasmas 20 056108 doi: 10.1063/1.4803930}

    CrossRef Google Scholar

    [25]
    Lin Z, Ethier S, Hahm T and Tang W 2002 Phys. Rev. Lett. 88 195004 doi: 10.1103/PhysRevLett.88.195004}

    CrossRef Google Scholar

    [26]
    Lin Z, Holod I, Chen L, Diamond P, Hahm T and Ethier S 2007 Phys. Rev. Lett. 99 265003 doi: 10.1103/PhysRevLett.99.265003}

    CrossRef Google Scholar

  • Related Articles

    [1]Hui Li, Ji-Quan Li, Zheng-Xiong Wang. Global Effects on Drift Wave Microturbulence in Tokamak Plasmas [J]. Chin. Phys. Lett., 2023, 40(10): 105201. doi: 10.1088/0256-307X/40/10/105201
    [2]Wei Hu, Hong-Ying Feng, Chao Dong. Collisional Effects on Drift Wave Microturbulence in Tokamak Plasmas [J]. Chin. Phys. Lett., 2018, 35(10): 105201. doi: 10.1088/0256-307X/35/10/105201
    [3]Zafar Yasin, M. Ikram Shahzad. Comparison of Fission Induced by Protons and Pions [J]. Chin. Phys. Lett., 2011, 28(8): 082502. doi: 10.1088/0256-307X/28/8/082502
    [4]SHI Bing-Ren. Possibility of Establishing D-3 He Fusion Reactor Using Spherical Tokamaks [J]. Chin. Phys. Lett., 2004, 21(9): 1783-1786.
    [5]BAI Lin(L. Bai), QIU Xiaoming(X. M. Qiu), HUANG Lin(L. Huang). A Hybrid Dissipative Trapped Electron ITG Mode [J]. Chin. Phys. Lett., 1995, 12(12): 743-746.
    [6]DING Liancheng, JIANG Guangkuan, WEI Lehan. Measurement of H/H+D Ratio and Recycling in Ion CyclotronResonance Heating HT-6M Tokamak [J]. Chin. Phys. Lett., 1994, 11(12): 741-743.
    [7]ZENG Lei, YU Changxuan, CAO Jinxiang, ZHU Guoliang, ZHANG Daqing, LI Youyi. Microturbulence in HT-6M Tokamak [J]. Chin. Phys. Lett., 1993, 10(8): 482-485.
    [8]CHANG Liyan, ZENG Lei, CAO Jinxiang, YU Changxuan, ZU Qinxin. STUDY OF MICROTURBULENCE ON THE KT-5 TOKAMAK BY CO2 LASER SCATTERING [J]. Chin. Phys. Lett., 1990, 7(1): 16-19.
    [9]GU Hui, LI Qi, ZHANG Jinlong, ZOU Bensan, YIN Daole. STRUCTURAL TRANSITIONS IN 90K SUPERCONDUCTING PEROVSKITE Ba2LaCu307-y:A TEM STUDY [J]. Chin. Phys. Lett., 1988, 5(7): 293-296.
    [10]WU Zi-qin, DUAN Jian-zhong. THE INSTENSITY RATIOS I(L)/I(K) FROM Ge TO Sn MEASURED IN TEM USING EDS [J]. Chin. Phys. Lett., 1985, 2(6): 257-260.

Catalog

    Article views (432) PDF downloads (432) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return