Express Letter

Quantum Approach to Fast Protein-Folding Time

Funds: Supported by National Key R&D Program of China under Grant No 2017YFA0304304, and partially by the Fundamental Research Funds for the Central Universities.
  • Received Date: July 25, 2019
  • Published Date: July 31, 2019
  • In the traditional random-conformational-search model, various hypotheses with a series of meta-stable intermediate states were proposed to resolve the Levinthal paradox in protein-folding time. Here we introduce a quantum strategy to formulate protein folding as a quantum walk on a definite graph, which provides us a general framework without making hypotheses. Evaluating it by the mean of first passage time, we find that the folding time via our quantum approach is much shorter than the one obtained via classical random walks. This idea is expected to evoke more insights for future studies.
  • Article Text

  • [1]
    Harrington W F and Schellman J A 1956 C R Trav Lab Carlsberg Chim. 30 21

    Google Scholar

    [2]
    Levinthal C 1968 J. Chem. Phys. 65 44 doi: 10.1051/jcp/1968650044}

    CrossRef Google Scholar

    [3]
    Mallamace F, Corsaro C, D Mallamace et al. 2016 Proc. Natl. Acad. Sci. USA 113 3159 doi: 10.1073/pnas.1524864113}

    CrossRef Google Scholar

    [4]
    Portman J J, Takada S and Wolynes P G 1998 Phys. Rev. Lett. 81 5237 doi: 10.1103/PhysRevLett.81.5237}

    CrossRef Google Scholar

    [5]
    Jacksom S E 1998 Folding Des. 3 R81 doi: 10.1016/S1359-02789800033-9}

    CrossRef Google Scholar

    [6]
    Wolynes P G, Eaton W A and Fersht A R 2012 Proc. Natl. Acad. Sci. USA 109 17770 doi: 10.1073/pnas.1215733109}

    CrossRef Google Scholar

    [7]
    Mũnoz V and Eaton W A 1999 Proc. Natl. Acad. Sci. USA 96 11311 doi: 10.1073/pnas.96.20.11311}

    CrossRef Google Scholar

    [8]
    Henry E R and Eqton W A 2004 Chem. Phys. 307 163 doi: 10.1016/j.chemphys.2004.06.064}

    CrossRef Google Scholar

    [9]
    Englander S W and Mayne L 2017 Proc. Natl. Acad. Sci. USA 114 8253 doi: 10.1073/pnas.1706196114}

    CrossRef Google Scholar

    [10]
    Karplus M and Weaver D L 1976 Nature 260 404 doi: 10.1038/260404a0}

    CrossRef Google Scholar

    [11]
    Sali A, Shakhnovich E and Karplus M 1994 Nature 369 248 doi: 10.1038/369248a0}

    CrossRef Google Scholar

    [12]
    Guo Z Y and Thirumalai D 1995 Biopolymers 36 83 doi: 10.1002/bip.360360108}

    CrossRef Google Scholar

    [13]
    Fersht A R 2000 Proc. Natl. Acad. Sci. USA 97 1525 doi: 10.1073/pnas.97.4.1525}

    CrossRef Google Scholar

    [14]
    Oliveberg M and Wolynes P G 2005 Q. Rev. Biophys. 38 245 doi: 10.1017/S0033583506004185}

    CrossRef Google Scholar

    [15]
    Shakhnovich E 2006 Chem. Rev. 106 1559 doi: 10.1021/cr040425u}

    CrossRef Google Scholar

    [16]
    Dill K A and MacCallum J L 2012 Science 338 1042 doi: 10.1126/science.1219021}

    CrossRef Google Scholar

    [17]
    Thirumalai D, Liu Z X, O'Brien E P and Reddy G 2013 Curr. Opin. Struct. Biol. 23 22 doi: 10.1016/j.sbi.2012.11.010}

    CrossRef Google Scholar

    [18]
    Piana S, Lindorff-Larsen K and Shaw D E 2012 Proc. Natl. Acad. Sci. USA 109 17845 doi: 10.1073/pnas.1201811109}

    CrossRef Google Scholar

    [19]
    Henry E R, Best R B and Eaton W A 2013 Proc. Natl. Acad. Sci. USA 110 17880 doi: 10.1073/pnas.1317105110}

    CrossRef Google Scholar

    [20]
    Snow C D, Nguyen H, Pande V and Gruebele M 2002 Nature 420 102 doi: 10.1038/nature01160}

    CrossRef Google Scholar

    [21]
    Rocklin G J et al. 2017 Science 357 168 doi: 10.1126/science.aan0693}

    CrossRef Google Scholar

    [22]
    Mũnoz V 2014 Proc. Natl. Acad. Sci. USA 111 15863 doi: 10.1073/pnas.1418039111}

    CrossRef Google Scholar

    [23]
    Taketomi H, Ueda Y and Go N 1975 Int. J. Peptide Protein Res. 7 445

    Google Scholar

    [24]
    Dill K A 1985 Biochemistry 24 1501 doi: 10.1021/bi00327a032}

    CrossRef Google Scholar

    [25]
    Li H, Helling R, Tang C and Wingreen N S 1996 Science 273 666 doi: 10.1126/science.273.5275.666}

    CrossRef Google Scholar

    [26]
    Li Y Q, Ji Y Y, Mao J W and Tang X W 2005 Phys. Rev. E 72 021904 doi: 10.1103/PhysRevE.72.021904}

    CrossRef Google Scholar

    [27]
    van Kampen N G 1997 Stochastic Processes in Physics, Chemistry revised edition Amsterdam: North-Holland

    Google Scholar

    [28]
    Aharonov Y, Davidovich L and Zagury N 1993 Phys. Rev. A 48 1687 doi: 10.1103/PhysRevA.48.1687}

    CrossRef Google Scholar

    [29]
    Farhi E and Gutmann S 1998 Phys. Rev. A 58 915 doi: 10.1103/PhysRevA.58.915}

    CrossRef Google Scholar

    [30]
    Manouchehri K and Wang J B 2014 Physical Implementation of Quantum Walks Berlin: Springer-Verlag

    Google Scholar

    [31]
    Anfinsen C B 1973 Science 181 223 doi: 10.1126/science.181.4096.223}

    CrossRef Google Scholar

    [32]
    Shakhnovich E and Gutin A 1990 J. Chem. Phys. 93 5967 doi: 10.1063/1.459480}

    CrossRef Google Scholar

    [33]
    Socci N D and Onuchic J N 1994 J. Chem. Phys. 101 1519 doi: 10.1063/1.467775}

    CrossRef Google Scholar

    [34]
    Socci N D, Onuchic J N and Wolynes P G 1996 J. Chem. Phys. 104 5860 doi: 10.1063/1.471317}

    CrossRef Google Scholar

    [35]
    Montroll E W and Weiss G H 1965 J. Math. Phys. 6 167 doi: 10.1063/1.1704269}

    CrossRef Google Scholar

    [36]
    Lindblad G 1976 Commun. Math. Phys. 48 119 doi: 10.1007/BF01608499}

    CrossRef Google Scholar

    [37]
    Montroll E W 1969 J. Math. Phys. 10 753 doi: 10.1063/1.1664902}

    CrossRef Google Scholar

    [38]
    Redner S 2001 A Guide to First-Passage Processes Cambridge: Cambridge University Press

    Google Scholar

    [39]
    Noh J D and Rieger H 2004 Phys. Rev. Lett. 92 118701 doi: 10.1103/PhysRevLett.92.118701}

    CrossRef Google Scholar

    [40]
    Condamin S, Benichou O, Tejedor V, Voituriez R, Klafter J 2007 Nature 450 77 doi: 10.1038/nature06201}

    CrossRef Google Scholar

    [41]
    Guerin T, Levernier N, Benichou O and Voituriez R 2016 Nature 534 356 doi: 10.1038/nature18272}

    CrossRef Google Scholar

    [42]
    Duan Y and Kollman P A 1998 Science 282 740 doi: 10.1126/science.282.5389.740}

    CrossRef Google Scholar

    [43]
    Christopher C M, Christopher C P and Dutton P L 2006 Philos. Trans. R. Soc. B 361 1295 doi: 10.1098/rstb.2006.1868}

    CrossRef Google Scholar

    [44]
    Xiao L et al. 2017 Nat. Phys. 13 1117 doi: 10.1038/nphys4204}

    CrossRef Google Scholar

  • Related Articles

    [1]FENG Lie-Feng, LI Yang, LI Ding, WANG Cun-Da, ZHANG Guo-Yi, YAO Dong-Sheng, LIU Wei-Fang, XING Peng-Fei. Frequency Response of Modulated Electroluminescence of Light-Emitting Diodes [J]. Chin. Phys. Lett., 2011, 28(10): 107801. doi: 10.1088/0256-307X/28/10/107801
    [2]ZHU Yin. Measurement of the Speed of Gravity [J]. Chin. Phys. Lett., 2011, 28(7): 070401. doi: 10.1088/0256-307X/28/7/070401
    [3]LI Yuan, ZHANG Yu-Chi, ZHANG Peng-Fei, GUO Yan-Qiang, LI Gang, WANGJun-Min, ZHANG Tian-Cai. Experimental Study on Coherence Time of a Light Field with Single Photon Counting [J]. Chin. Phys. Lett., 2009, 26(7): 074205. doi: 10.1088/0256-307X/26/7/074205
    [4]CHEN Min, SHAO Cheng-Gang. Influence of Photon Mass on Vacuum Birefringence Experiment [J]. Chin. Phys. Lett., 2007, 24(4): 902-904.
    [5]YU Ran, LIU Jue-Ping, ZHU Kai. Off-Shell Photon Light-Cone Transverse Wavefunction at Leading Twist [J]. Chin. Phys. Lett., 2005, 22(10): 2415-2518.
    [6]ZHANG Jun-Hai, WANG Feng-Zhi, WANG Yi-Qiu, YANG Dong-Hai. Evaluation of Light Frequency Shift in a Caesium Beam Frequency Standard with Sharp Angle Incident Detecting Laser [J]. Chin. Phys. Lett., 2004, 21(5): 840-842.
    [7]TU Xian-Hua, WANG Jin, JIANG Kai-Jun, HE Ming, LI Ke, ZHONG Jia-Qi, ZHAN Ming-Sheng. Direct Measurement of Light Speed Reduction in a Rubidium Vapor Medium Coherently Prepared by Electromagnetically InducedTransparency [J]. Chin. Phys. Lett., 2003, 20(11): 1954-1956.
    [8]LIN Xue-Chun, LI Rui-Ning, CUI Da-Fu, YAO Ai-Yun, FENG Yan, BI Yong, XU Zu-Yan. High-Efficient Blue-Light Generation by Intracavity Frequency Doubling with LiB3O5 [J]. Chin. Phys. Lett., 2002, 19(8): 1106-1107.
    [9]WANG De-Zhong, LI Dai-Jun, LIU Xia-J, LI Shi-Qun, WANG Yu-Zhu. Nonlinear Theory of Light Speed Reduction in a Three-LevelΛ System [J]. Chin. Phys. Lett., 2001, 18(8): 1067-1068.
    [10]YIN Shiduan, XIAO Guangming, ZHU Peiran. Channeling Alignment for Epitaxial Light-Mass Film on Heavy-Mass Substrate [J]. Chin. Phys. Lett., 1994, 11(5): 293-296.
  • Other Related Supplements

Catalog

    Article views (768) PDF downloads (824) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return