$n$ | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|
$\mathcal{C}_n^{\max}$ | 0.25 | 0.8274 | 1.36164 | 2.13731 | 2.95301 | 3.95931 |
$n$ | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|
$\mathcal{U}_n$ | 0.81269 | 1.870073 | 3.1505 | 4.99842 | 6.89215 | 9.40963 |
$\mathcal{C}_n^{\max}$ | 0.25 | 0.8274 | 1.36164 | 2.13731 | 2.95301 | $3.95931$ |
$n=4$ | $a$ | $b$ | $c$ | $d$ |
---|---|---|---|---|
$|v_1\rangle$ | $0.70665+0.0254066 i$ | $-0.273116-0.652233 i$ | 0 | 0 |
$|v_2\rangle$ | 0 | 0 | $0.868503+0.297489 i$ | $0.396488$ |
$|v_3\rangle$ | $-0.466525-0.53137 i$ | $-0.646286-0.286906 i$ | 0 | 0 |
$|v_4\rangle$ | 0 | 0 | $0.586517+0.515392 i$ | $-0.624795$ |
$n=5$ | $a$ | $b$ | $c$ | $d$ |
---|---|---|---|---|
$|v_1\rangle$ | $0.18768+0.490924 i$ | $0.12785+0.403276 i$ | $-0.206286+0.581194 i$ | $0.405527$ |
$|v_2\rangle$ | $0.397579+0.367669 i$ | $0.0879838+0.198232 i$ | $-0.457812+ 0.285688 i$ | $0.607046$ |
$|v_3\rangle$ | $0.398287-0.432446 i$ | $0.371809+0.312584 i$ | $0.456885+ 0.45049 i$ | $0.0819882$ |
$|v_4\rangle$ | $0.366946-0.398246 i$ | $0.423918+0.185457 i$ | $-0.0139384+ 0.267278 i$ | $0.648859$ |
$|v_5\rangle$ | $0.0607413-0.522054 i$ | $0.299907+0.382791 i$ | $0.0207791+ 0.551671 i$ | $0.427229$ |
$n=6$ | $a$ | $b$ | $c$ | $d$ |
---|---|---|---|---|
$|v_1\rangle$ | $-0.436403+0.252662 i$ | $0.095235+0.276497 i$ | $-0.057475+ 0.444261 i$ | $0.677881$ |
$|v_2\rangle$ | $-0.147543+0.490076 i$ | $0.273338+0.411367 i$ | $0.354141+ 0.36426 i$ | $0.485818$ |
$|v_3\rangle$ | $-0.210603+0.594956 i$ | $0.152935+0.267333 i$ | $0.0598766+ 0.0937419 i$ | $0.703167$ |
$|v_4\rangle$ | $0.221295+0.591063 i$ | $-0.115864+0.153754 i$ | $-0.151426+ 0.241731 i$ | $0.695158$ |
$|v_5\rangle$ | $0.174355+0.48119 i$ | $-0.398965+0.470242 i$ | $-0.182013+ 0.328311 i$ | $0.46566$ |
$|v_6\rangle$ | $0.444776+0.237613 i$ | $0.0264764+0.494313 i$ | $-0.11967+ 0.172508 i$ | $0.675713$ |
$n=7$ | $a$ | $b$ | $c$ | $d$ |
---|---|---|---|---|
$|v_1\rangle$ | $-0.394285+0.296713 i$ | $0.546027+0.30655 i$ | $-0.468963+ 0.380074 i$ | 0 |
$|v_2\rangle$ | $0.307976-0.448579 i$ | $-0.4599-0.608007 i$ | $0.145245-0.318829 i$ | 0 |
$|v_3\rangle$ | $-0.045416+0.589955 i$ | $0.61183+0.0287591 i$ | $-0.460073+ 0.25112 i$ | 0 |
$|v_4\rangle$ | $0.0322225-0.582536 i$ | $-0.301126-0.475756 i$ | $0.519879- 0.268921 i$ | 0 |
$|v_5\rangle$ | $0.111495+0.581101 i$ | $0.196411+0.220302 i$ | $-0.750142+ 0.008229 i$ | 0 |
$|v_6\rangle$ | $-0.410023-0.357705 i$ | $-0.0810111-0.535883 i$ | $0.358147- 0.530966 i$ | 0 |
$|v_7\rangle$ | $-0.467464-0.15804 i$ | $-0.34308-0.383825 i$ | $0.615884- 0.334906 i$ | 0 |
$n=8$ | $a$ | $b$ | $c$ | $d$ |
---|---|---|---|---|
$|v_1\rangle$ | $-0.499006+0.0216048 i$ | $-0.211461+0.463812 i$ | $0.439241+ 0.303319 i$ | $-0.453602$ |
$|v_2\rangle$ | $0.52228-0.00710324 i$ | $0.144103-0.612403 i$ | $0.00415181- 0.483616 i$ | $0.312199$ |
$|v_3\rangle$ | $0.520612-0.356394 i$ | $-0.0904396-0.265975 i$ | $-0.361235- 0.462783 i$ | $0.422333$ |
$|v_4\rangle$ | $-0.21583+0.524012 i$ | $-0.114434+0.273583 i$ | $0.434874+ 0.426784 i$ | $-0.468643$ |
$|v_5\rangle$ | $0.227886-0.518882 i$ | $0.221532-0.204758 i$ | $-0.349157- 0.382708 i$ | $0.5652$ |
$|v_6\rangle$ | $-0.149217-0.613015 i$ | $0.200654-0.261108 i$ | $-0.236598- 0.202355 i$ | $0.629746$ |
$|v_7\rangle$ | $-0.0416309-0.520667 i$ | $0.308124-0.238458 i$ | $0.211678- 0.28708 i$ | $0.669438$ |
$|v_8\rangle$ | $-0.262461-0.424956 i$ | $0.181185-0.0945268 i$ | $-0.155976- 0.598985 i$ | $0.570659$ |
$n=9$ | $a$ | $b$ | $c$ | $d$ |
---|---|---|---|---|
$|v_1\rangle$ | $-0.00251992+0.486816 i$ | $0.238577-0.0176134 i$ | $-0.0970935+ 0.663679 i$ | $0.505844$ |
$|v_2\rangle$ | $0.0692973+0.543341 i$ | $0.388129+0.19344 i$ | $-0.0698194+ 0.261011 i$ | $0.662505$ |
$|v_3\rangle$ | $-0.0230431+0.604249 i$ | $0.274295+0.166844 i$ | $-0.482856+ 0.302757 i$ | $0.454386$ |
$|v_4\rangle$ | $0.418232+0.391532 i$ | $0.349656+0.092302 i$ | $-0.244857+ 0.524417 i$ | $0.453913$ |
$|v_5\rangle$ | $0.410871+0.39902 i$ | $0.143813+0.138889 i$ | $-0.477104+ 0.569262 i$ | $0.283387$ |
$|v_6\rangle$ | $-0.572339+0.0253528 i$ | $-0.355996-0.133033 i$ | $-0.0301123- 0.636497 i$ | $-0.348309$ |
$|v_7\rangle$ | $0.521094-0.306771 i$ | $0.203391+0.231058 i$ | $0.0928997+ 0.675602 i$ | $0.272999$ |
$|v_8\rangle$ | $0.379493-0.394974 i$ | $0.517077+0.312333 i$ | $0.157038+ 0.356729 i$ | $0.427953$ |
$|v_9\rangle$ | $0.303225-0.380859 i$ | $0.459073+0.148583 i$ | $-0.168143+ 0.662693 i$ | $0.250483$ |
[1] | Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 | Quantum entanglement
[2] | Brunner N, Cavalcanti D, Pironio S, Scarani V and Wehner S 2014 Rev. Mod. Phys. 86 419 | Bell nonlocality
[3] | Wiseman H M, Jones S J and Doherty A C 2007 Phys. Rev. Lett. 98 140402 | Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox
[4] | Kochen S and Specker E P 1967 J. Math. Mech. 17 59 |
[5] | Larsson J Å 2002 Europhys. Lett. 58 799 | A Kochen-Specker inequality
[6] | Kleinmann M, Budroni C, Larsson J Å, Gühne O and Cabello A 2012 Phys. Rev. Lett. 109 250402 | Optimal Inequalities for State-Independent Contextuality
[7] | Araújo M, Quintino M T, Budroni C, Terra Cunha M and Cabello A 2013 Phys. Rev. A 88 022118 | All noncontextuality inequalities for the -cycle scenario
[8] | Xiang Y and Hong F Y 2013 Chin. Phys. B 22 110302 | Minimum detection efficiency for the loophole-free confirmation of quantum contextuality
[9] | Chen X, Su H Y and Chen J L 2016 Chin. Phys. Lett. 33 010302 | Connecting Quantum Contextuality and Genuine Multipartite Nonlocality with the Quantumness Witness
[10] | Zhu F, Zhang W and Huang Y 2017 Chin. Phys. B 26 100302 | Experimental simulation of violation of the Wright inequality by coherent light
[11] | Cabello A, Severini S and Winter A 2014 Phys. Rev. Lett. 112 040401 | Graph-Theoretic Approach to Quantum Correlations
[12] | Klyachko A A, Can M A, Binicioğlu S and Shumovsky A S 2008 Phys. Rev. Lett. 101 020403 | Simple Test for Hidden Variables in Spin-1 Systems
[13] | Badzia̧g P, Bengtsson I, Cabello A, Granström H and Larsson J Å 2011 Found. Phys. 41 414 | Pentagrams and Paradoxes
[14] | Liang Y C, Spekkens R W and Wiseman H M 2011 Phys. Rep. 506 1 | Specker’s parable of the overprotective seer: A road to contextuality, nonlocality and complementarity
[15] | Cabello A, Badzia̧g P, Terra C M and Bourennane M 2013 Phys. Rev. Lett. 111 180404 | Simple Hardy-Like Proof of Quantum Contextuality
[16] | Amaral B, Terra C M and Cabello A 2015 Phys. Rev. A 92 062125 | Quantum theory allows for absolute maximal contextuality
[17] | Heisenberg W 1927 Z. Phys. (German) 43 172 |
[18] | Kennard E H 1927 Z. Phys. (German) 44 326 |
[19] | Robertson H P 1929 Phys. Rev. 34 163 | The Uncertainty Principle