Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution

Funds: Supported by the National Natural Science Foundation of China under Grant Nos 11775177, 11775178, 11647057 and 11705146, the Special Research Funds of Shaanxi Province Department of Education under Grant No 16JK1759, the Basic Research Plan of Natural Science in Shaanxi Province under Grant No 2018JQ1014, the Major Basic Research Program of Natural Science of Shaanxi Province under Grant No 2017ZDJC-32, the Key Innovative Research Team of Quantum Many-Body Theory and Quantum Control in Shaanxi Province under Grant No 2017KCT-12, the Northwest University Scientific Research Funds under Grant No 15NW26, the Double First-Class University Construction Project of Northwest University, and the Australian Research Council through Discovery Projects under Grant No DP190101529.
  • Received Date: April 23, 2019
  • Published Date: July 31, 2019
  • The definitions of strong superadditive deficit for relative entropy coherence and monogamy deficit of measurement-dependent global quantum discord are proposed. The equivalence between them is proved, which provides a useful criterion for the validity of the strong superadditive inequality of relative entropy coherence. In addition, the strong superadditive deficit of relative entropy coherence is proved to be greater than or equal to zero under the condition that bipartite measurement-dependent global quantum discord (GQD) does not increase under the discarding of subsystems. Using the Monte Carlo method, it is shown that both the strong superadditive inequality of relative entropy coherence and the monogamy inequality of measurement-dependent GQD are established under general circumstances. The bipartite measurement-dependent GQD does not increase under the discarding of subsystems. The multipartite situation is also discussed in detail.
  • Article Text

  • [1]
    Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics Cambridge: Cambridge University Press

    Google Scholar

    [2]
    London F and London H 1935 Proc. R. Soc. A 149 71 doi: 10.1098/rspa.1935.0048}

    CrossRef Google Scholar

    [3]
    Cwiklinski P, Studzinski M, Horodecki M and Oppenheim J 2015 Phys. Rev. Lett. 115 210403 doi: 10.1103/PhysRevLett.115.210403}

    CrossRef Google Scholar

    [4]
    Nielsen M A and Chuang L 2000 Quantum Computation and Quantum Information Cambridge: Cambridge University Press

    Google Scholar

    [5]
    Shi H L, Liu S Y, Wang X H, Yang W L, Yang Z Y and Fan H 2017 Phys. Rev. A 95 032307 doi: 10.1103/PhysRevA.95.032307}

    CrossRef Google Scholar

    [6]
    Hou J X, Liu S Y, Wang X H and Yang W L 2017 Phys. Rev. A 96 042324 doi: 10.1103/PhysRevA.96.042324}

    CrossRef Google Scholar

    [7]
    Su Y L, Liu S Y, Wang X H, Fan H and Yang W L 2018 Sci. Rep. 8 11081 doi: 10.1038/s41598-018-29342-5}

    CrossRef Google Scholar

    [8]
    Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401 doi: 10.1103/PhysRevLett.113.140401}

    CrossRef Google Scholar

    [9]
    Bagan E, Bergou J A, Cottrell S S and Hillery M 2016 Phys. Rev. Lett. 116 160406 doi: 10.1103/PhysRevLett.116.160406}

    CrossRef Google Scholar

    [10]
    Jha P K, Mrejen M, Kim J, Wu C, Wang Y, Rostovtsev Y V and Zhang X 2016 Phys. Rev. Lett. 116 165502 doi: 10.1103/PhysRevLett.116.165502}

    CrossRef Google Scholar

    [11]
    Kammerlander P and Anders J 2016 Sci. Rep. 6 22174 doi: 10.1038/srep22174}

    CrossRef Google Scholar

    [12]
    Zhang F G and Li Y M 2018 Chin. Phys. B 27 090301 doi: 10.1088/1674-1056/27/9/090301}

    CrossRef Google Scholar

    [13]
    Yi T C, Ding Y R, Ren J, Wang Y M and You W L 2018 Acta Phys. Sin. 67 140303 in Chinese doi: 10.7498/aps.67.140303}

    CrossRef Google Scholar

    [14]
    Gao Q, Gao D Y and Xia Y J 2018 Chin. Phys. B 27 060304 doi: 10.1088/1674-1056/27/6/060304}

    CrossRef Google Scholar

    [15]
    Napoli C, Bromley T R, Cianciaruso M, Piani M, Johnston N and Adesso G 2016 Phys. Rev. Lett. 116 150502 doi: 10.1103/PhysRevLett.116.150502}

    CrossRef Google Scholar

    [16]
    Ma J J, Yadin B, Girolami D, Vedral V and Gu M 2016 Phys. Rev. Lett. 116 160407 doi: 10.1103/PhysRevLett.116.160407}

    CrossRef Google Scholar

    [17]
    Zhang Y R, Shao L H, Li Y and Fan H 2016 Phys. Rev. A 93 012334 doi: 10.1103/PhysRevA.93.012334}

    CrossRef Google Scholar

    [18]
    Cheng S and Hall M J W 2015 Phys. Rev. A 92 042101 doi: 10.1103/PhysRevA.92.042101}

    CrossRef Google Scholar

    [19]
    Singh U, Zhang L and Pati A K 2016 Phys. Rev. A 93 032125 doi: 10.1103/PhysRevA.93.032125}

    CrossRef Google Scholar

    [20]
    Rana S, Parashar P and Lewenstein M 2016 Phys. Rev. A 93 012110 doi: 10.1103/PhysRevA.93.012110}

    CrossRef Google Scholar

    [21]
    Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 doi: 10.1103/RevModPhys.81.865}

    CrossRef Google Scholar

    [22]
    Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901 doi: 10.1103/PhysRevLett.88.017901}

    CrossRef Google Scholar

    [23]
    Modi K, Brodutch A, Cable H, Paterek T and Vedral V 2012 Rev. Mod. Phys. 84 1655 doi: 10.1103/RevModPhys.84.1655}

    CrossRef Google Scholar

    [24]
    Chitambar E, Streltsov A, Rana S, Bera M N, Adesso G and Lewenstein M 2016 Phys. Rev. Lett. 116 070402 doi: 10.1103/PhysRevLett.116.070402}

    CrossRef Google Scholar

    [25]
    Streltsov A, Chitambar E, Rana S, Bera M N, Winter A and Lewenstein M 2016 Phys. Rev. Lett. 116 240405 doi: 10.1103/PhysRevLett.116.240405}

    CrossRef Google Scholar

    [26]
    Killoran N, Steinhoff F E S and Plenio M B 2016 Phys. Rev. Lett. 116 080402 doi: 10.1103/PhysRevLett.116.080402}

    CrossRef Google Scholar

    [27]
    Chitambar E and Hsieh M H 2016 Phys. Rev. Lett. 117 020402 doi: 10.1103/PhysRevLett.117.020402}

    CrossRef Google Scholar

    [28]
    Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403 doi: 10.1103/PhysRevLett.115.020403}

    CrossRef Google Scholar

    [29]
    Ma T, Zhao M J, Fei S M and Long G L 2016 Phys. Rev. A 94 042312 doi: 10.1103/PhysRevA.94.042312}

    CrossRef Google Scholar

    [30]
    Xi Z J, Li Y M and Fan H 2015 Sci. Rep. 5 10922 doi: 10.1038/srep10922}

    CrossRef Google Scholar

    [31]
    Ma T, Zhao M J, Zhang H J, Fei S M and Long G L 2017 Phys. Rev. A 95 042328 doi: 10.1103/PhysRevA.95.042328}

    CrossRef Google Scholar

    [32]
    Liu S Y, Zhang Y R, Zhao L M, Yang W L and Fan H 2014 Ann. Phys. 348 256 doi: 10.1016/j.aop.2014.05.015}

    CrossRef Google Scholar

    [33]
    Acín A, Andrianov A, Costa L, Jané E, Latorre J I and Tarrach R 2000 Phys. Rev. Lett. 85 1560 doi: 10.1103/PhysRevLett.85.1560}

    CrossRef Google Scholar

    [34]
    Acín A, Bruß D, Lewenstein M and Sanpera A 2001 Phys. Rev. Lett. 87 040401 doi: 10.1103/PhysRevLett.87.040401}

    CrossRef Google Scholar

  • Related Articles

    [1]XIANG Xia, SHI Xiao-Yan, GAO Xiao-Lin, JI Fang, WANG Ya-Jun, LIU Chun-Ming, ZU Xiao-Tao. Effect of N-Doping on Absorption and Luminescence of Anatase TiO2 Films [J]. Chin. Phys. Lett., 2012, 29(2): 027801. doi: 10.1088/0256-307X/29/2/027801
    [2]SU Yu-Cheng, ZHANG Gu-Ling, WANG Wen-Zhong, ZOU Bin, AO Le. One-Step Preparation of N-Doped Nanowhisker TiO2 by Micro Arc Oxidation [J]. Chin. Phys. Lett., 2011, 28(2): 025203. doi: 10.1088/0256-307X/28/2/025203
    [3]GUO Mei-Li, ZHANG Xiao-Dong, LIANG Chun-Tian, JIA Guo-Zhi. Mechanism of Visible Photoactivity of F-Doped TiO2 [J]. Chin. Phys. Lett., 2010, 27(5): 057103. doi: 10.1088/0256-307X/27/5/057103
    [4]XU Jian-Ping, LI Lan, LV Li-Ya, ZHANG Xiao-Song, CHEN Xi-Ming, WANG Jian-Feng, ZHANG Feng-Ming, ZHONG Wei, DU You-Wei. Structural and Magnetic Properties of Fe-Doped Anatase TiO2 Films Annealed in Vacuum [J]. Chin. Phys. Lett., 2009, 26(9): 097502. doi: 10.1088/0256-307X/26/9/097502
    [5]XIAO Xiu-Di, DONG Guo-Ping, QI Hong-Ji, FAN Zheng-Xiu, HE Hong-Bo, SHAO Jian-Da. Effects of Annealing on Microstructure and Optical Properties of TiO2 Sculptured Thin Films [J]. Chin. Phys. Lett., 2008, 25(6): 2181-2184.
    [6]LAN Xiao-Hua, YANG Shu-Qin, ZOU Yu, WANG Zhi-An, HUANG Ning-Kang. Effects of Different Dispersion Methods on the Microscopical Morphologyof TiO2 Film [J]. Chin. Phys. Lett., 2007, 24(12): 3567-3569.
    [7]HU Ke-Yan, CUI Ping, CHEN Xiao-Ming, ZHANG Min, LI Yong. Preparation and Visible Light Photocatalytic Activity for Photocatalyst of Permeable Glass Membrane/TiO2 Doped with Co [J]. Chin. Phys. Lett., 2007, 24(8): 2405-2407.
    [8]XU Wei-Wei, DAI Song-Yuan, HU Lin-Hua, LIANG Lin-Yun, WANG Kong-Jia. Influence of Yb-Doped Nanoporous TiO2 Films on Photovoltaic Performance of Dye-Sensitized Solar Cells [J]. Chin. Phys. Lett., 2006, 23(8): 2288-2291.
    [9]GE Shi-Hui, WANG Xin-Wei, KOU Xiao-Ming, ZHOU Xue-Yun, XI Li, ZUO Ya-Lu, YANG Xiao-Lin, ZHAO Yu-Xuan. Fabrication and Magnetic Properties of Co-Doped TiO2 Powders Studied by Nuclear Magnetic Resonance [J]. Chin. Phys. Lett., 2005, 22(7): 1772-1775.
    [10]XIE Ping, DAI Jianhua. WANG Pengye, ZHANG Hongjun. Transverse Modulation of a Laser Beam in Cerium-Doped BaTiO3 [J]. Chin. Phys. Lett., 1995, 12(12): 731-734.

Catalog

    Article views (383) PDF downloads (316) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return