Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution
-
Abstract
The definitions of strong superadditive deficit for relative entropy coherence and monogamy deficit of measurement-dependent global quantum discord are proposed. The equivalence between them is proved, which provides a useful criterion for the validity of the strong superadditive inequality of relative entropy coherence. In addition, the strong superadditive deficit of relative entropy coherence is proved to be greater than or equal to zero under the condition that bipartite measurement-dependent global quantum discord (GQD) does not increase under the discarding of subsystems. Using the Monte Carlo method, it is shown that both the strong superadditive inequality of relative entropy coherence and the monogamy inequality of measurement-dependent GQD are established under general circumstances. The bipartite measurement-dependent GQD does not increase under the discarding of subsystems. The multipartite situation is also discussed in detail. -
-
References
[1] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics Cambridge: Cambridge University Press[2] London F and London H 1935 Proc. R. Soc. A 149 71 doi: 10.1098/rspa.1935.0048}[3] Cwiklinski P, Studzinski M, Horodecki M and Oppenheim J 2015 Phys. Rev. Lett. 115 210403 doi: 10.1103/PhysRevLett.115.210403}[4] Nielsen M A and Chuang L 2000 Quantum Computation and Quantum Information Cambridge: Cambridge University Press[5] Shi H L, Liu S Y, Wang X H, Yang W L, Yang Z Y and Fan H 2017 Phys. Rev. A 95 032307 doi: 10.1103/PhysRevA.95.032307}[6] Hou J X, Liu S Y, Wang X H and Yang W L 2017 Phys. Rev. A 96 042324 doi: 10.1103/PhysRevA.96.042324}[7] Su Y L, Liu S Y, Wang X H, Fan H and Yang W L 2018 Sci. Rep. 8 11081 doi: 10.1038/s41598-018-29342-5}[8] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401 doi: 10.1103/PhysRevLett.113.140401}[9] Bagan E, Bergou J A, Cottrell S S and Hillery M 2016 Phys. Rev. Lett. 116 160406 doi: 10.1103/PhysRevLett.116.160406}[10] Jha P K, Mrejen M, Kim J, Wu C, Wang Y, Rostovtsev Y V and Zhang X 2016 Phys. Rev. Lett. 116 165502 doi: 10.1103/PhysRevLett.116.165502}[11] Kammerlander P and Anders J 2016 Sci. Rep. 6 22174 doi: 10.1038/srep22174}[12] Zhang F G and Li Y M 2018 Chin. Phys. B 27 090301 doi: 10.1088/1674-1056/27/9/090301}[13] Yi T C, Ding Y R, Ren J, Wang Y M and You W L 2018 Acta Phys. Sin. 67 140303 in Chinese doi: 10.7498/aps.67.140303}[14] Gao Q, Gao D Y and Xia Y J 2018 Chin. Phys. B 27 060304 doi: 10.1088/1674-1056/27/6/060304}[15] Napoli C, Bromley T R, Cianciaruso M, Piani M, Johnston N and Adesso G 2016 Phys. Rev. Lett. 116 150502 doi: 10.1103/PhysRevLett.116.150502}[16] Ma J J, Yadin B, Girolami D, Vedral V and Gu M 2016 Phys. Rev. Lett. 116 160407 doi: 10.1103/PhysRevLett.116.160407}[17] Zhang Y R, Shao L H, Li Y and Fan H 2016 Phys. Rev. A 93 012334 doi: 10.1103/PhysRevA.93.012334}[18] Cheng S and Hall M J W 2015 Phys. Rev. A 92 042101 doi: 10.1103/PhysRevA.92.042101}[19] Singh U, Zhang L and Pati A K 2016 Phys. Rev. A 93 032125 doi: 10.1103/PhysRevA.93.032125}[20] Rana S, Parashar P and Lewenstein M 2016 Phys. Rev. A 93 012110 doi: 10.1103/PhysRevA.93.012110}[21] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 doi: 10.1103/RevModPhys.81.865}[22] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901 doi: 10.1103/PhysRevLett.88.017901}[23] Modi K, Brodutch A, Cable H, Paterek T and Vedral V 2012 Rev. Mod. Phys. 84 1655 doi: 10.1103/RevModPhys.84.1655}[24] Chitambar E, Streltsov A, Rana S, Bera M N, Adesso G and Lewenstein M 2016 Phys. Rev. Lett. 116 070402 doi: 10.1103/PhysRevLett.116.070402}[25] Streltsov A, Chitambar E, Rana S, Bera M N, Winter A and Lewenstein M 2016 Phys. Rev. Lett. 116 240405 doi: 10.1103/PhysRevLett.116.240405}[26] Killoran N, Steinhoff F E S and Plenio M B 2016 Phys. Rev. Lett. 116 080402 doi: 10.1103/PhysRevLett.116.080402}[27] Chitambar E and Hsieh M H 2016 Phys. Rev. Lett. 117 020402 doi: 10.1103/PhysRevLett.117.020402}[28] Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403 doi: 10.1103/PhysRevLett.115.020403}[29] Ma T, Zhao M J, Fei S M and Long G L 2016 Phys. Rev. A 94 042312 doi: 10.1103/PhysRevA.94.042312}[30] Xi Z J, Li Y M and Fan H 2015 Sci. Rep. 5 10922 doi: 10.1038/srep10922}[31] Ma T, Zhao M J, Zhang H J, Fei S M and Long G L 2017 Phys. Rev. A 95 042328 doi: 10.1103/PhysRevA.95.042328}[32] Liu S Y, Zhang Y R, Zhao L M, Yang W L and Fan H 2014 Ann. Phys. 348 256 doi: 10.1016/j.aop.2014.05.015}[33] Acín A, Andrianov A, Costa L, Jané E, Latorre J I and Tarrach R 2000 Phys. Rev. Lett. 85 1560 doi: 10.1103/PhysRevLett.85.1560}[34] Acín A, Bruß D, Lewenstein M and Sanpera A 2001 Phys. Rev. Lett. 87 040401 doi: 10.1103/PhysRevLett.87.040401} -
Related Articles
[1] XIANG Xia, SHI Xiao-Yan, GAO Xiao-Lin, JI Fang, WANG Ya-Jun, LIU Chun-Ming, ZU Xiao-Tao. Effect of N-Doping on Absorption and Luminescence of Anatase TiO2 Films [J]. Chin. Phys. Lett., 2012, 29(2): 027801. doi: 10.1088/0256-307X/29/2/027801 [2] SU Yu-Cheng, ZHANG Gu-Ling, WANG Wen-Zhong, ZOU Bin, AO Le. One-Step Preparation of N-Doped Nanowhisker TiO2 by Micro Arc Oxidation [J]. Chin. Phys. Lett., 2011, 28(2): 025203. doi: 10.1088/0256-307X/28/2/025203 [3] GUO Mei-Li, ZHANG Xiao-Dong, LIANG Chun-Tian, JIA Guo-Zhi. Mechanism of Visible Photoactivity of F-Doped TiO2 [J]. Chin. Phys. Lett., 2010, 27(5): 057103. doi: 10.1088/0256-307X/27/5/057103 [4] XU Jian-Ping, LI Lan, LV Li-Ya, ZHANG Xiao-Song, CHEN Xi-Ming, WANG Jian-Feng, ZHANG Feng-Ming, ZHONG Wei, DU You-Wei. Structural and Magnetic Properties of Fe-Doped Anatase TiO2 Films Annealed in Vacuum [J]. Chin. Phys. Lett., 2009, 26(9): 097502. doi: 10.1088/0256-307X/26/9/097502 [5] XIAO Xiu-Di, DONG Guo-Ping, QI Hong-Ji, FAN Zheng-Xiu, HE Hong-Bo, SHAO Jian-Da. Effects of Annealing on Microstructure and Optical Properties of TiO2 Sculptured Thin Films [J]. Chin. Phys. Lett., 2008, 25(6): 2181-2184. [6] LAN Xiao-Hua, YANG Shu-Qin, ZOU Yu, WANG Zhi-An, HUANG Ning-Kang. Effects of Different Dispersion Methods on the Microscopical Morphologyof TiO2 Film [J]. Chin. Phys. Lett., 2007, 24(12): 3567-3569. [7] HU Ke-Yan, CUI Ping, CHEN Xiao-Ming, ZHANG Min, LI Yong. Preparation and Visible Light Photocatalytic Activity for Photocatalyst of Permeable Glass Membrane/TiO2 Doped with Co [J]. Chin. Phys. Lett., 2007, 24(8): 2405-2407. [8] XU Wei-Wei, DAI Song-Yuan, HU Lin-Hua, LIANG Lin-Yun, WANG Kong-Jia. Influence of Yb-Doped Nanoporous TiO2 Films on Photovoltaic Performance of Dye-Sensitized Solar Cells [J]. Chin. Phys. Lett., 2006, 23(8): 2288-2291. [9] GE Shi-Hui, WANG Xin-Wei, KOU Xiao-Ming, ZHOU Xue-Yun, XI Li, ZUO Ya-Lu, YANG Xiao-Lin, ZHAO Yu-Xuan. Fabrication and Magnetic Properties of Co-Doped TiO2 Powders Studied by Nuclear Magnetic Resonance [J]. Chin. Phys. Lett., 2005, 22(7): 1772-1775. [10] XIE Ping, DAI Jianhua. WANG Pengye, ZHANG Hongjun. Transverse Modulation of a Laser Beam in Cerium-Doped BaTiO3 [J]. Chin. Phys. Lett., 1995, 12(12): 731-734.