[1] | Guan X W et al 2013 Rev. Mod. Phys. 85 1633 | Fermi gases in one dimension: From Bethe ansatz to experiments
[2] | Imambekov A et al 2012 Rev. Mod. Phys. 84 1253 | One-dimensional quantum liquids: Beyond the Luttinger liquid paradigm
[3] | Rauer B et al 2016 Phys. Rev. Lett. 116 030402 | Cooling of a One-Dimensional Bose Gas
[4] | Armijo J 2012 Phys. Rev. Lett. 108 225306 | Direct Observation of Quantum Phonon Fluctuations in a One-Dimensional Bose Gas
[5] | Zhai Y Y et al 2013 Phys. Rev. A 87 063638 | Effective preparation and collisional decay of atomic condensates in excited bands of an optical lattice
[6] | Cazalilla M A et al 2011 Rev. Mod. Phys. 83 1405 | One dimensional bosons: From condensed matter systems to ultracold gases
[7] | Hofferberth S et al 2007 Nature 449 324 | Non-equilibrium coherence dynamics in one-dimensional Bose gases
[8] | Lamporesi G et al 2013 Nat. Phys. 9 656 | Spontaneous creation of Kibble–Zurek solitons in a Bose–Einstein condensate
[9] | Gallucci D et al 2012 Phys. Rev. A 86 013627 | Phase coherence in quasicondensate experiments: An ab initio analysis via the stochastic Gross-Pitaevskii equation
[10] | Dettmer S et al 2001 Phys. Rev. Lett. 87 160406 | Observation of Phase Fluctuations in Elongated Bose-Einstein Condensates
[11] | Jo J B et al 2007 Phys. Rev. Lett. 99 240406 | Matter-Wave Interferometry with Phase Fluctuating Bose-Einstein Condensates
[12] | Richard S et al 2003 Phys. Rev. Lett. 91 010405 | Momentum Spectroscopy of 1D Phase Fluctuations in Bose-Einstein Condensates
[13] | Kadio D et al 2005 Phys. Rev. A 72 013607 | Phase fluctuations of a Bose-Einstein condensate in low-dimensional geometry
[14] | Paredes B et al 2004 Nature 429 277 | Tonks–Girardeau gas of ultracold atoms in an optical lattice
[15] | Armijo J et al 2011 Phys. Rev. A 83 021605(R) | Mapping out the quasicondensate transition through the dimensional crossover from one to three dimensions
[16] | Cronin A D et al 2009 Rev. Mod. Phys. 81 1051 | Optics and interferometry with atoms and molecules
[17] | Lan S Y et al 2013 Science 339 554 | A Clock Directly Linking Time to a Particle's Mass
[18] | Zhang Z et al 2016 Phys. Rev. Lett. 117 123601 | Observation of Parity-Time Symmetry in Optically Induced Atomic Lattices
[19] | Robins N P et al 2013 Phys. Rep. 529 265 | Atom lasers: Production, properties and prospects for precision inertial measurement
[20] | Chiow S et al 2011 Phys. Rev. Lett. 107 130403 | Large Area Atom Interferometers
[21] | Li L et al 2016 Chin. Phys. B 25 073201 | Automatic compensation of magnetic field for a rubidium space cold atom clock
[22] | Xu L Y and Xu X Y 2016 Chin. Phys. B 25 103202 | Analysis of the blackbody-radiation shift in an ytterbium optical lattice clock
[23] | Sakmann K and Kasevich M 2016 Nat. Phys. 12 451 | Single-shot simulations of dynamic quantum many-body systems
[24] | Simon J et al 2011 Nature 472 307 | Quantum simulation of antiferromagnetic spin chains in an optical lattice
[25] | Bloch I et al 2012 Nat. Phys. 8 267 | Quantum simulations with ultracold quantum gases
[26] | Dong D et al 2015 Chin. Phys. Lett. 32 020303 | Controlling the Directed Quantum Transport of Ultracold Atoms in an Optical Lattice with a Periodic Driving Field
[27] | Bai X and Xue J K 2015 Chin. Phys. Lett. 32 010302 | Subdiffusion of Dipolar Gas in One-Dimensional Quasiperiodic Potentials
[28] | Berrada T et al 2013 Nat. Commun. 4 2077 | Integrated Mach–Zehnder interferometer for Bose–Einstein condensates
[29] | Huang J Q et al 2016 Chin. Phys. B 25 063701 | Intense source of cold cesium atoms based on a two-dimensional magneto–optical trap with independent axial cooling and pushing
[30] | Ji Z H et al 2014 Chin. Phys. B 23 113702 | Systematically investigating the polarization gradient cooling in an optical molasses of ultracold cesium atoms
[31] | Schumm T et al 2005 Nat. Phys. 1 57 | Matter-wave interferometry in a double well on an atom chip
[32] | Jo J B et al 2007 Phys. Rev. Lett. 98 030407 | Long Phase Coherence Time and Number Squeezing of Two Bose-Einstein Condensates on an Atom Chip
[33] | Ockeloen C F et al 2013 Phys. Rev. Lett. 111 143001 | Quantum Metrology with a Scanning Probe Atom Interferometer
[34] | Jiang X J et al 2016 Chin. Phys. B 25 080311 | Demonstration of a cold atom beam splitter on atom chip
[35] | Lin Y J et al 2009 Phys. Rev. A 79 063631 | Rapid production of Bose-Einstein condensates in a combined magnetic and optical potential
[36] | Zhang X B et al 2012 Science 335 1070 | Observation of Quantum Criticality with Ultracold Atoms in Optical Lattices
[37] | Luan T et al 2015 Opt. Express 23 11378 | Two-stage crossed beam cooling with ^6Li and ^133Cs atoms in microgravity
[38] | Greiner M et al 2001 Phys. Rev. A 63 031401(R) | Magnetic transport of trapped cold atoms over a large distance
[39] | Zobay O and Garraway B 2001 Phys. Rev. Lett. 86 1195 | Two-Dimensional Atom Trapping in Field-Induced Adiabatic Potentials
[40] | Lesanovsky I et al 2006 Phys. Rev. A 74 033619 | Manipulation of ultracold atoms in dressed adiabatic radio-frequency potentials
[41] | Meinert F et al 2014 Science 344 1259 | Observation of many-body dynamics in long-range tunneling after a quantum quench
[42] | Zippilli S et al 2011 Phys. Rev. A 83 051602 | Quantum-noise quenching in atomic tweezers
[43] | Navon N et al 2015 Science 347 167 | Critical dynamics of spontaneous symmetry breaking in a homogeneous Bose gas
[44] | Andrews M R et al 1997 Science 275 637 | Observation of Interference Between Two Bose Condensates