[1] | Petrosyan D, Bensky G, Kurizki G, Mazets I, Majer J and Schmiedmayer J 2009 Phys. Rev. A 79 040304(R) | Reversible state transfer between superconducting qubits and atomic ensembles
[2] | Hafezi M, Kim Z, Rolston S L, Orozco L A, Lev B L and Taylor J M 2012 Phys. Rev. A 85 020302(R) | Atomic interface between microwave and optical photons
[3] | Blum S, O'Brien C, Lauk N, Bushev P, Fleischhauer M and Morigi G 2015 Phys. Rev. A 91 033834 | Interfacing microwave qubits and optical photons via spin ensembles
[4] | Li B, Li P B, Zhou Y, Ma S L and Li F L 2017 Phys. Rev. A 96 032342 | Quantum microwave-optical interface with nitrogen-vacancy centers in diamond
[5] | Huo M X 2018 arXiv:1812.00360v1[quant-ph] | Bidirectional and passive optical field to microwave field quantum converter with high bandwidth
[6] | Kiffner M, Feizpour A, Kaczmarek K T, Jaksch D and Nunn J 2016 New J. Phys. 18 093030 | Two-way interconversion of millimeter-wave and optical fields in Rydberg gases
[7] | Gard B T, Jacobs K, McDermott R and Saffman M 2017 Phys. Rev. A 96 013833 | Microwave-to-optical frequency conversion using a cesium atom coupled to a superconducting resonator
[8] | Covey J P, Sipahigil A and Saffman M 2019 arXiv:1904.08999v1[physics.atom-ph] | Microwave-to-optical conversion via four-wave-mixing in a cold ytterbium ensemble
[9] | Petrosyan D, Mølmer K, Fortágh J and Saffman M 2019 arXiv:1904.09197v1[quant-ph] | Microwave to optical conversion with atoms on a superconducting chip
[10] | Han J S, Vogt T, Gross C, Jaksch D, Kiffner M and Li W H 2018 Phys. Rev. Lett. 120 093201 | Coherent Microwave-to-Optical Conversion via Six-Wave Mixing in Rydberg Atoms
[11] | Vogt T, Gross C, Han J S, Pal S B, Lam M, Kiffner M and Li W H 2019 Phys. Rev. A 99 023832 | Efficient microwave-to-optical conversion using Rydberg atoms
[12] | Adwaith K V, Karigowda A, Manwatkar C, Bretenaker F and Narayanan A 2019 Opt. Lett. 44 33 | Coherent microwave-to-optical conversion by three-wave mixing in a room temperature atomic system
[13] | Bernon S, Hattermann H, Bothner D, Knufinke M, Weiss P, Jessen F, Cano D, Kemmler M, Kleiner R, Koelle D and Fortágh J 2013 Nat. Commun. 4 2380 | Manipulation and coherence of ultra-cold atoms on a superconducting atom chip
[14] | Hattermann H, Bothner D, Ley L Y, Ferdinand B, Wiedmaier D, Sárkány L, Kleiner R, Koelle D and Fortágh J 2017 Nat. Commun. 8 2254 | Coupling ultracold atoms to a superconducting coplanar waveguide resonator
[15] | Lekavicius I, Golter D A, Oo T and Wang H L 2017 Phys. Rev. Lett. 119 063601 | Transfer of Phase Information between Microwave and Optical Fields via an Electron Spin
[16] | Wang Y F, Li J F, Zhang S C, Su K Y, Zhou Y R, Liao K Y, Du S W, Yan H and Zhu S L 2019 Nat. Photon. 13 346 | Efficient quantum memory for single-photon polarization qubits
[17] | Li J F, Wang Y F, Su K Y, Liao K Y, Zhang S C, Yan H and Zhu S L 2019 Chin. Phys. Lett. 36 074202 | Generation of Gaussian-Shape Single Photons for High Efficiency Quantum Storage
[18] | Du Y X, Liang Z T, Huang W, Yan H and Zhu S L 2014 Phys. Rev. A 90 023821 | Experimental observation of double coherent stimulated Raman adiabatic passages in three-level systems in a cold atomic ensemble
[19] | Du Y X, Liang Z T, Li Y C, Yue X X, Lv Q X, Huang W, Chen X, Yan H and Zhu S L 2016 Nat. Commun. 7 12479 | Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms
[20] | Marino A M and Stroud C R 2008 Rev. Sci. Instrum. 79 013104 | Phase-locked laser system for use in atomic coherence experiments
[21] | Shahriar M S and Hemmer P R 1990 Phys. Rev. Lett. 65 1865 | Direct excitation of microwave-spin dressed states using a laser-excited resonance Raman interaction