[1] | Walsh A, Yan Y, Huda M N, Al-Jassim M M and Wei S H 2009 Chem. Mater. 21 547 | Band Edge Electronic Structure of BiVO 4 : Elucidating the Role of the Bi s and V d Orbitals
[2] | Yin W J, Wei S H, Al-Jassim M M, Turner J and Yan Y 2011 Phys. Rev. B 83 155102 | Doping properties of monoclinic BiVO studied by first-principles density-functional theory
[3] | Berglund S P, Flaherty D W, Hahn N T, Bard A J and Mullins C B 2011 J. Phys. Chem. C 115 3794 |
[4] | Kudo A, Ueda K, Kato H and Mikami I 1998 Catal. Lett. 53 229 | Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution
[5] | Iwase A and Kudo A 2010 J. Mater. Chem. 20 7536 | Photoelectrochemical water splitting using visible-light-responsive BiVO4 fine particles prepared in an aqueous acetic acid solution
[6] | Shi X, Choi I Y, Zhang K, Kwon J, Dong Y K, Lee J K, Sang H O, Kim J K and Park J H 2014 Nat. Commun. 5 4775 | Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures
[7] | Abdi F F and van de Krol R 2012 J. Phys. Chem. C 116 9398 | Nature and Light Dependence of Bulk Recombination in Co-Pi-Catalyzed BiVO 4 Photoanodes
[8] | Abdi F F, Firet N and van de Krol R 2013 ChemCatChem 5 490 | Efficient BiVO 4 Thin Film Photoanodes Modified with Cobalt Phosphate Catalyst and W-doping
[9] | Liang Y, Tsubota T, Mooij L P A and van de Krol R 2011 J. Phys. Chem. C 115 17594 | Highly Improved Quantum Efficiencies for Thin Film BiVO 4 Photoanodes
[10] | Abdi F F, Savenije T J, May M M, Dam B and van de Krol R 2013 J. Phys. Chem. Lett. 4 2752 | The Origin of Slow Carrier Transport in BiVO 4 Thin Film Photoanodes: A Time-Resolved Microwave Conductivity Study
[11] | Feng C, Jiao Z, Li S, Yan Z and Bi Y 2015 Nanoscale 7 20374 | Facile fabrication of BiVO 4 nanofilms with controlled pore size and their photoelectrochemical performances
[12] | Park H S, Kweon K E, Ye H, Paek E, Hwang G S and Bard A J 2011 J. Phys. Chem. C 115 17870 | Factors in the Metal Doping of BiVO 4 for Improved Photoelectrocatalytic Activity as Studied by Scanning Electrochemical Microscopy and First-Principles Density-Functional Calculation
[13] | Hanfl, M, Syassen K, Christensen N E and Novikov D L 2000 Nature 408 174 | New high-pressure phases of lithium
[14] | Pan X C, Chen X, Liu H, Feng Y, Wei Z, Zhou Y, Chi Z, Li P, Fei Y and Song F 2015 Nat. Commun. 6 7805 | Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride
[15] | Nayak A P, Bhattacharyya S, Zhu J, Liu J, Wu X, Pandey T, Jin C, Singh A K, Akinwande D and Lin J F 2014 Nat. Commun. 5 3731 | Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide
[16] | Zhao J et al 2010 Chin. Phys. Lett. 27 066101 | Structural Investigation of Solid Methane at High Pressure
[17] | Duan D F, Ma Y B, Shao Z J, Xie H, Huang X L, Liu B B and Cui T 2017 Acta Phys. Sin. 66 036102 (in Chinese) | Structures and novel superconductivity of hydrogen-rich compounds under high pressures
[18] | Qin T, Wang Q, Wang L, Yan H, Liu C, Han Y, Ma Y and Gao C 2016 Phys. Chem. Chem. Phys. 18 33109 | High-pressure dielectric behavior of BaMoO 4 : a combined experimental and theoretical study
[19] | Hakeem M A, Jackson D E, Hamlin J J, Errandonea D, Proctor J E and Bettinelli M 2018 Inorg. Chem. 57 7550 | High Pressure Raman, Optical Absorption, and Resistivity Study of SrCrO 4
[20] | Li W, Feng K, Wang Q, Yan J, Liu C, Liu X, Li Y, Han Y, Ma Y and Gao C 2015 Appl. Phys. Lett. 107 201603 | Effect of crystallization water on the structural and electrical properties of CuWO 4 under high pressure
[21] | Li M, Gao C, Ma Y, Li Y, Li X, Li H, Liu J, Hao A, He C, Huang X, Zhang D and Yu C 2006 Rev. Sci. Instrum. 77 123902 | New diamond anvil cell system for in situ resistance measurement under extreme conditions
[22] | Yun Y, Huang Y, Fei M, Zhang Z, Wei X and Zhu G 2016 J. Mater. Sci. 51 6662 | Structural stability, band structure and optical properties of different BiVO4 phases under pressure
[23] | Wang J, Zhang G, Liu H, Wang Q, Shen W, Yan Y, Liu C, Han Y and Gao C 2017 Appl. Phys. Lett. 111 031907 | Ionic transport properties in AgCl under high pressures
[24] | Masetti G, Severi M and Solmi S 1983 IEEE Trans. Electron Devices 30 764 | Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon
[25] | Coehoorn R, Pasveer W F, Bobbert P A and Michels M A J 2005 Phys. Rev. B 72 155206 | Charge-carrier concentration dependence of the hopping mobility in organic materials with Gaussian disorder
[26] | Arkhipov V I, Heremans P, Emelianova E V, Adriaenssens G J and Bässler H 2003 Appl. Phys. Lett. 82 3245 | Charge carrier mobility in doped semiconducting polymers