Systems | Adsorption energy(eV) | $\mu (\mu_{\rm B})$ | Charge (a.u.) | ||
---|---|---|---|---|---|
$\mu_{\rm RE}$ | $\mu_{\rm C}$ | $\mu_{\rm tot}$ | |||
La-GY | 3.476 | 0 | 0 | 0 | 1.041 |
Ce-GY | 6.342 | 0 | 0 | 0 | 1.223 |
Pr-GY | 3.741 | 0 | 0 | 0 | 1.102 |
Nd-GY | 4.949 | 4.120 | $-$0.04 | 4.108 | 1.114 |
Pm-GY | 4.369 | 5.203 | $-$0.036 | 5.167 | 1.113 |
Sm-GY | 3.905 | 6.257 | $-$0.027 | 6.230 | 1.202 |
Eu-GY | 3.642 | 7.259 | $-$0.044 | 7.215 | 1.175 |
[1] | Kroto H W et al 1985 Nature 318 162 | C60: Buckminsterfullerene
[2] | Iijima S 1991 Nature 354 56 | Helical microtubules of graphitic carbon
[3] | Novoselov K S et al 2004 Science 306 666 | Electric Field Effect in Atomically Thin Carbon Films
[4] | Baughman R H et al 1987 J. Chem. Phys. 87 6687 | Structure‐property predictions for new planar forms of carbon: Layered phases containing s p 2 and s p atoms
[5] | Haley M M et al 1997 Angew. Chem. Int. Ed. Engl. 36 836 | Carbon Networks Based on Dehydrobenzoannulenes: Synthesis of Graphdiyne Substructures
[6] | Li G et al 2010 Chem. Commun. 46 3256 | Architecture of graphdiyne nanoscale films
[7] | Li G X et al 2011 J. Phys. Chem. C 115 2611 | Construction of Tubular Molecule Aggregations of Graphdiyne for Highly Efficient Field Emission
[8] | Sarma J V N et al 2014 Nano 9 1450032 | GRAPHYNE-BASED SINGLE ELECTRON TRANSISTOR: AB INITIO ANALYSIS
[9] | Lu R F et al 2013 Phys. Chem. Chem. Phys. 15 16120 | Boron-substituted graphyne as a versatile material with high storage capacities of Li and H2: a multiscale theoretical study
[10] | Pan L D et al 2011 Appl. Phys. Lett. 98 173102 | Graphyne- and graphdiyne-based nanoribbons: Density functional theory calculations of electronic structures
[11] | Xiang L et al 2015 Chin. Phys. Lett. 32 096801 | Nanoindentation Models of Monolayer Graphene and Graphyne under Point Load Pattern Studied by Molecular Dynamics
[12] | Ansari R et al 2013 J. Nanostruct. Chem. 3 33 | A potentiometric solid state copper electrode based on nanostructure polypyrrole conducting polymer film doped with 5-sulfosalicylic acid
[13] | Srinivasu K et al 2012 J. Phys. Chem. C 116 5951 | Graphyne and Graphdiyne: Promising Materials for Nanoelectronics and Energy Storage Applications
[14] | Lu J L et al 2014 Int. J. Hydrogen Energy 39 17112 | Li decorated 6,6,12-graphyne: A new star for hydrogen storage material
[15] | Hwang H J et al 2012 J. Phys. Chem. C 116 20220 | Thermodynamically Stable Calcium-Decorated Graphyne as a Hydrogen Storage Medium
[16] | He J J et al 2012 J. Phys. Chem. C 116 26313 | Magnetic Properties of Single Transition-Metal Atom Absorbed Graphdiyne and Graphyne Sheet from DFT+U Calculations
[17] | Sholeh A et al 2015 Fullerenes, Nanotubes Carbon Nanostruct. 23 494 | Study of the Influence of Transition Metal Atoms on Electronic and Magnetic Properties of Graphyne Nanotubes Using Density Functional Theory
[18] | Kim S et al 2017 Carbon 120 63 | Functionalization of γ-graphyne by transition metal adatoms
[19] | Wang Y S et al 2018 Appl. Surf. Sci. 452 181 | Tuning the electronic and magnetic properties of graphyne by hydrogenation
[20] | Delley B 2000 J. Chem. Phys. 113 7756 | From molecules to solids with the DMol3 approach
[21] | Delley B 2002 Phys. Rev. B 66 155125 | Hardness conserving semilocal pseudopotentials
[22] | Asadabadi S J et al 2004 Physica B 349 76 | Density functional approach to study structural properties and electric field gradients in rare earth materials
[23] | Rubio-Ponce A et al 2008 Phys. Rev. B 78 035107 | First-principles study of anatase and rutile doped with Eu ions: A comparison of GGA and calculations
[24] | Hou X et al 2018 Materials 11 188 | Quelques propriétés typiques des corps solides