[1] | Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z and Luo J 2013 Phys. Rev. A 88 043601 | Quantum breathing dynamics of ultracold bosons in one-dimensional harmonic traps: Unraveling the pathway from few- to many-body systems
[2] | Ashby N, Heavner T P, Jefferts S R, Parker T E, Radnaev A G and Dudin Y O 2007 Phys. Rev. Lett. 98 070802 | Testing Local Position Invariance with Four Cesium-Fountain Primary Frequency Standards and Four NIST Hydrogen Masers
[3] | Fortier T M, Ashby N, Bergquist J C, Delaney M J, Diddams S A, Heavner T P, Hollberg L, Itano W M, Jefferts S R, Kim K, Levi F, Lorini L, Oskay W H, Parker T E, Shirley J and Stalnaker J E 2007 Phys. Rev. Lett. 98 070801 | Precision Atomic Spectroscopy for Improved Limits on Variation of the Fine Structure Constant and Local Position Invariance
[4] | Chen Z L, Bohnet J G, Weiner J M and Thompson J K 2012 Rev. Sci. Instrum. 83 044701 | A low phase noise microwave source for atomic spin squeezing experiments in 87 Rb
[5] | Du Y B, Wei R, Dong R C, Zou F and Wang Y Z 2015 Chin. Phys. B 24 070601 | Recent improvements on the atomic fountain clock at SIOM
[6] | Levi F, Calonico D, Calosso C E, Godone A, Micalizio S and Costanzo G A 2014 Metrologia 51 270 | Accuracy evaluation of ITCsF2: a nitrogen cooled caesium fountain
[7] | Ramírez-Martinez F, Lours M, Rosenbusch P, Reinhard F and Reichel J 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 88 | Low-phase-noise frequency synthesizer for the trapped atom clock on a chip
[8] | François B, Calosso C E, Danet J M and Boudot R 2014 Rev. Sci. Instrum. 85 094709 | A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock
[9] | Boudot R, Guerandel S and De Clercq E 2009 IEEE Trans. Instrum. Meas. 58 3659 | Simple-Design Low-Noise NLTL-Based Frequency Synthesizers for a CPT Cs Clock
[10] | Li W B, Du Y B, Li H and Lu Z H 2018 AIP Adv. 8 095311 | Development of low phase noise microwave frequency synthesizers for reducing Dick effect of Cs fountain clocks
[11] | François B, Calosso C E, Abdel Hafiz M, Micalizio S and Boudot R 2015 Rev. Sci. Instrum. 86 094707 | Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks
[12] | Heavner T P, Jefferts S R, Donley E A, Parker T E and Levi F 2005 Proceedings of the 2005 IEEE Int. Freq. Control Symp. Exposition 86 308 |
[13] | Camparo J C 2007 Phys. Today 60 33 | The rubidium atomic clock and basic research
[14] | Vannicola F, Beard R, White J, Senior K, Largay M and Buisson J A 2014 Proceedings of 42nd PTTI System and Applications Meeting p 181 |
[15] | Micalizio S, Levi F, Godone A, Calosso C E and Nazionale I 2015 Proceedings IFCS EFTF 1 |
[16] | Bandi T, Affolderbach C, Stefanucci C, Merli F, Skrivervik A K and Mileti G 2014 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 1769 | Compact high-performance continuous-wave double-resonance rubidium standard with 1.4 × 10−13 τ−1/2 stability
[17] | Hao Q, Li W B, He S G, Lv J F, Wang P F and Mei G H 2016 Rev. Sci. Instrum. 87 123111 | A physics package for rubidium atomic frequency standard with a short-term stability of 2.4 × 10 −13 τ −1/2
[18] | Calosso C E, Godone A, Levi F and Micalizio S 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 2646 | Enhanced temperature sensitivity in vapor-cell frequency standards
[19] | Deng J Q, Mileti G, Drullinger R E, Jennings D A and Walls F L 1999 Phys. Rev. A 59 773 | Noise considerations for locking to the center of a Lorentzian line
[20] | Dick G J 1987 Proc. PTTI 19 133 |
[21] | Joyet A, Mileti G, Dudle G and Thomann P 2001 IEEE Trans. Instrum. Meas. 50 150 |
[22] | Zhang J W, Miao K and Wang L J 2015 Chin. Phys. Lett. 32 010601 | Dick Effect in a Microwave Frequency Standard Based on Laser-Cooled 113 Cd+ Ions
[23] | Wang X M, Meng Y L, Wang Y N, Wan J Y, Yu M Y, Wnag X, Xiao L, Li T, Cheng H D and Liu L 2017 Chin. Phys. Lett. 34 063702 | Dick Effect in the Integrating Sphere Cold Atom Clock
[24] | Micalizio S, Calosso C E, Godone A and Levi F 2012 Metrologia 49 425 | Metrological characterization of the pulsed Rb clock with optical detection
[25] | Yan L L, Zhao W Y, Zhang Y Y, Tai Z Y, Zhang P, Rao B J, Ning K, Zhang X F, Guo W G, Zhang S G and Jiang H F 2018 Chin. Phys. B 27 030601 | Photonic generation of RF and microwave signal with relative frequency instability of ${10}^{-15}$
[26] | Fortier T M, Kirchner M S, Quinlan F, Taylor J, Bergquist J C, Rosenb, T, Lemke N, Ludlow A, Jiang Y and Oates C W 2011 Nat. Photon. 5 425 | Generation of ultrastable microwaves via optical frequency division
[27] | Lipphardt B, Grosche G, Sterr U, Tamm C, Weyers S and Schnatz H 2008 IEEE Trans. Instrum. Meas. 58 1258 | The Stability of an Optical Clock Laser Transferred to the Interrogation Oscillator for a Cs Fountain
[28] | Abgrall M, Guéna J, Lours M, Santarelli G, Tobar M E, Bize S, Grop S, Dubois B, Fluhr C and Giordano V 2016 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63 1198 | High-Stability Comparison of Atomic Fountains Using Two Different Cryogenic Oscillators
[29] | Takamizawa A, Yanagimachi S, Tanabe T, Hagimoto K, Hirano I, Watabe K, Ikegami T and Hartnett J G 2014 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 1463 | Atomic fountain clock with very high frequency stability employing a pulse-tube-cryocooled sapphire oscillator
[30] | Gao X, Klumperink E and Nauta B 2015 IEEE Custom Integrated Circuits Conference (CICC) |
[31] | Gao X, Eric G, Kpluperink A M, Geraedts F J and Nauta B 2009 IEEE Trans. Circuits Syst. II: Express Briefs 56 117 | Jitter Analysis and a Benchmarking Figure-of-Merit for Phase-Locked Loops