[1] | Scott J F 2007 Science 315 954 | Applications of Modern Ferroelectrics
[2] | Shin Y H, Grinberg I, Chen I W and Rappe A M 2007 Nature 449 881 | Nucleation and growth mechanism of ferroelectric domain-wall motion
[3] | Ahart M, Somayazulu M, Cohen R E, Ganesh P, Dera P, Mao H, Hemley R J, Ren Y, Liermann P and Wu Z G 2008 Nature 451 545 | Origin of morphotropic phase boundaries in ferroelectrics
[4] | Horiuchi S, Tokunaga Y, Giovannetti G, Picozzi S, Itoh H, Shimano R, Kumai R and Tokura Y 2010 Nature 463 789 | Above-room-temperature ferroelectricity in a single-component molecular crystal
[5] | Gu Z Q, Pandya S, Samanta A, Liu S, Xiao G, Meyers C J G, Damodaran A R, Barak H, Dasgupta A, Saremi S, Polemi A, Wu L Y, Podpirka A A, Will-Cole A, Hawley C J, Davies P K, York R A, Grinberg I, Martin L W and Spanier J E 2018 Nature 560 622 | Resonant domain-wall-enhanced tunable microwave ferroelectrics
[6] | Kim T Y, Kim S K and Kim S 2018 Nano Convergence 5 30 | Application of ferroelectric materials for improving output power of energy harvesters
[7] | Grinberg I, West D V, Torres M, Gou G, Stein D M, Wu L, Chen G, Gallo E M, Akbashev A R, Davies P K, Spanier J E and Rappe A M 2013 Nature 503 509 | Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials
[8] | Ikeda N, Ohsumi H, Ohwada K, Ishii K, Inami T, Kakurai K, Murakami Y, Yoshii K, Mori S, Horibe Y and Kitô H 2005 Nature 436 1136 | Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4
[9] | Mitsui T, Tatsuzaki I, Nakamura E and Ishibashi Y 1976 An introduction to the Physics of Ferroelectrics (New York: Gordon and Breach Science Publishers) |
[10] | Mistewicz K 2018 J. Nanomater. 2018 1 | Recent Advances in Ferroelectric Nanosensors: Toward Sensitive Detection of Gas, Mechanothermal Signals, and Radiation
[11] | Liu Y, Aziguli H, Zhang B, Xu W H, Lu W C, Bernholc J and Wang Q 2018 Nature 562 96 | Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary
[12] | Zhang J L, Li Y Q, Zhao X Y and Huang Y N 2012 Acta Phys. Sin. 61 140379 (in Chinese) |
[13] | Wang X W and Xu H H 2011 Acta Phys. Sin. 60 30507 (in Chinese) |
[14] | Zhao L, Tu Y S, Wang C L and Fang H P 2016 Chin. Phys. Lett. 33 038201 | Comparisons of Criteria for Analyzing the Dynamical Association of Solutes in Aqueous Solutions
[15] | Deng Y B and Gu Q 2014 Chin. Phys. Lett. 31 020504 | Berezinskii—Kosterlitz—Thouless Transition in a Two-Dimensional Random-Bond XY Model on a Square Lattice
[16] | Rao Z H, Liu X J, Zhang R K, Li X, Wei C X, Wang H D and Li Y M 2014 Chin. Phys. Lett. 31 010501 | A Comparative Study on the Self Diffusion of N-Octadecane with Crystal and Amorphous Structure by Molecular Dynamics Simulation
[17] | Shi L W, Duan Y F, Yang X Q and Tang G 2011 Chin. Phys. Lett. 28 100503 | Phonon and Elastic Instabilities in Zincblende TlN under Hydrostatic Pressure from First Principles Calculations
[18] | Ge H X, Wu S Z, Cheng R J and Lo S M 2011 Chin. Phys. Lett. 28 090501 | Theoretical Analysis of a Modified Continuum Model
[19] | Landau H G 1937 Chem. Rev. 21 245 | The Ignition of Gases by Local Sources.
[20] | Landau H G 1939 J. Chem. Phys. 7 112 | The Ignition of Gases by Local Sources II. Ellipsoid Sources
[21] | Weiss P 1907 J. Phys. 6 661 |
[22] | Ising E 1925 Z. Phys. 31 253 | Beitrag zur Theorie des Ferromagnetismus
[23] | Blinc R and žekš B 1972 Adv. Phys. 21 693 | Dynamics of order-disorder-type ferroelectrics and anti-ferroelectrics
[24] | de Gennes P G 1963 Solid State Commun. 1 132 | Collective motions of hydrogen bonds
[25] | Wang Y L and Cooper B R 1968 Phys. Rev. 172 539 | Collective Excitations and Magnetic Ordering in Materials with Singlet Crystal-Field Ground State
[26] | Pfeuty P and Elliott R J 1971 J. Phys. C 4 2370 | The Ising model with a transverse field. II. Ground state properties
[27] | Cochran W 1963 Rep. Prog. Phys. 26 1 | Lattice vibrations
[28] | Devonshire A F 1949 Philos. Mag. 40 1040 | XCVI. Theory of barium titanate
[29] | Rice O K 1954 J. Chem. Phys. 22 1535 | Thermodynamics of Phase Transitions in Compressible Solid Lattices
[30] | Domb C 1956 J. Chem. Phys. 25 783 | Specific Heats of Compressible Lattices and the Theory of Melting
[31] | Baker G A and Essam J W 1970 Phys. Rev. Lett. 24 447 | Effects of Lattice Compressibility on Critical Behavior
[32] | Salinas S R 1974 J. Phys. C 7 241 | Phase diagrams for compressible Ising models
[33] | Wang C L, Qin Z K and Lin D L 1989 Phys. Rev. B 40 680 | First-order phase transition in order-disorder ferroelectrics
[34] | Shibuya I and Mitsui T 1961 J. Phys. Soc. Jpn. 16 479 | The Ferroelectric Phase Transition in (Glycine) 3 ·H 2 SO 4 and Critical X-Ray Scattering
[35] | Saxena A, Gupta V and Sreenivas K 2001 Mater. Sci. Eng. B 79 91 | Dielectric and ferroelectric properties of phosphoric acid doped triglycine sulfate single crystals
[36] | Gallardo M C, Martín-Olalla J M, Romero F J, Del Cerro J and Fugiel B 2009 J. Phys.: Condens. Matter 21 025902 | Memory effect in triglycine sulfate induced by a transverse electric field: specific heat measurement
[37] | Cohen R E 1992 Nature 358 136 | Origin of ferroelectricity in perovskite oxides
[38] | Lines M E and Glass A M 1977 Principles and Applications Ferroelectrics and Related Materials (Oxford: Clarendon press) |
[39] | Bragg W L and Williams E J 1935 Proc. R. Soc. A 151 540 |
[40] | Bragge W L and Williams E J 1934 Proc. R. Soc. A 145 699 | The Effect of Thermal Agitation on Atomic Arrangement in Alloys
[41] | Huang Y N, Wang Y N and Shen H M 1992 Phys. Rev. B 46 3290 | Internal friction and dielectric loss related to domain walls
[42] | Huang Y N, Li X, Ding Y, Wang Y N, Shen H M, Zhang Z F, Fang C S, Zhuo S H and Fung P C W 1997 Phys. Rev. B 55 16159 | Domain freezing in potassium dihydrogen phosphate, triglycine sulfate, and CuAlZnNi