[1] | Klitzing K v, Dorda G and Pepper M J P R L 1980 Phys. Rev. Lett. 45 494 | New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance
[2] | Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z and Lee C C 2015 Science 349 613 | Discovery of a Weyl fermion semimetal and topological Fermi arcs
[3] | Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029 | Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides
[4] | Chen X 2015 Sci. Chin. Mater. 58 675 | Experimental discovery of Weyl semimetal TaAs
[5] | Binnig G and Rohrer H 1983 Surf. Sci. 126 236 | Scanning tunneling microscopy
[6] | Damascelli A 2004 Phys. Scr. 2004 61 | Probing the Electronic Structure of Complex Systems by ARPES
[7] | Fisher I, Shapiro M and Analytis J 2012 Philos. Mag. 92 2401 | Principles of crystal growth of intermetallic and oxide compounds from molten solutions
[8] | Canfield P C and Fisk Z 1992 Philos. Mag. B 65 1117 |
[9] | Raccuglia P, Elbert K C, Adler P D, Falk C, Wenny M B, Mollo A, Zeller M, Friedler S A, Schrier J and Norquist A J 2016 Nature 533 73 | Machine-learning-assisted materials discovery using failed experiments
[10] | Nielsen J W and Dearborn E F 1958 J. Phys. Chem. Solids 5 202 | The growth of single crystals of magnetic garnets
[11] | Kohavi R 1996 Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (Portland, Oregon 1996) pp 202–207 |
[12] | Shevade S K, Keerthi S S, Bhattacharyya C and Murthy K R K 2000 IEEE Trans. Neural Netw. 11 1188 | Improvements to the SMO algorithm for SVM regression
[13] | Shalev-Shwartz S, Singer Y, Srebro N and Cotter A 2011 Math. Programming 127 3 | Pegasos: primal estimated sub-gradient solver for SVM
[14] | Cherkassky V and Ma Y 2004 Neural Networks 17 113 | Practical selection of SVM parameters and noise estimation for SVM regression
[15] | Joachims T 1998 Technical Report SFB 475 (Komplexitätsreduktion in Multivariaten) |
[16] | Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K and Kuksa P 2011 J. Mach. Learn. Res. 12 2493 |
[17] | Ren S, He K, Girshick R and Sun J 2015 NIPS'15 Proceedings of the 28th International Conference on Neural Information Processing Systems (Montreal, Canada 7–12 December 2015) vol 1 p 91 |
[18] | Churchland P S, Sejnowski T J and Poggio T A 1992 The Computational Brain (Cambridge: MIT Press) p 544 |
[19] | Magerman D M, 1995 Proceedings of the 33rd annual meeting on Association for Computational Linguistics, Association for Computational Linguistics pp 276–283 |
[20] | Leslie C, Eskin E and Noble W S 2002 Pacific Symposium on Biocomputing 7 564 |
[21] | Zhang H, Berg A C and Maire M 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (New York, USA 17–22 June 2006) | SVM-KNN: Discriminative Nearest Neighbor Classification for Visual Category Recognition
[22] | Brill E 1995 Comput. Linguistics 21 543 |
[23] | Hoo-Chang S, Roth H R, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura D and Summers R M 2016 IEEE Trans. Med. Imaging 35 1285 | Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning
[24] | Zhang Y and Ling C 2018 npj Comput. Mater. 4 25 | A strategy to apply machine learning to small datasets in materials science
[25] | Brockherde F, Vogt L, Li L, Tuckerman M E, Burke K and Müller K R 2017 Nat. Commun. 8 872 | Bypassing the Kohn-Sham equations with machine learning
[26] | Snyder J C, Rupp M, Hansen K, Müller K R and Burke K 2012 Phys. Rev. Lett. 108 253002 | Finding Density Functionals with Machine Learning
[27] | Ren F, Ward L, Williams T, Laws K J, Wolverton C, Hattrick-Simpers J and Mehta A 2018 Sci. Adv. 4 eaaq1566 | Corrosion behavior of metallic glasses
[28] | Pillong M, Marx C, Piechon P, Wicker J G, Cooper R I and Wagner T 2017 CrystEngComm 19 3737 | A publicly available crystallisation data set and its application in machine learning
[29] | Wicker J G and Cooper R I 2015 CrystEngComm 17 1927 | Will it crystallise? Predicting crystallinity of molecular materials
[30] | Zhou Q, Tang P, Liu S, Pan J, Yan Q and Zhang S C 2018 Proc. Natl. Acad. Sci. USA 115 E6411 | The materials project: A materials genome approach to accelerating materials innovation
[31] | Curtarolo S, Hart G L, Nardelli M B, Mingo N and Sanvito S and Levy O 2013 Nat. Mater. 12 191 | The high-throughput highway to computational materials design
[32] | Butler K T, Davies D W, Cartwright H, Isayev O and Walsh A 2018 Nature 559 547 | Machine learning for molecular and materials science
[33] | Natarajan A R and Van der Ven A 2018 npj Comput. Mater. 4 56 | Machine-learning the configurational energy of multicomponent crystalline solids
[34] | Tan P N, Steinbach M and Kumar V 2006 Introduction to Data Mining (New York: Pearson) vol 1 chap 2 p 41 |
[35] | Vapnik V N 1999 IEEE Trans. Neural Netw. 10 988 | An overview of statistical learning theory
[36] | Quinlan J R 1986 IEEE Int. Workshop Mach. Learn. Signal Process. 1 81 | Induction of decision trees
[37] | Ho T K 1995 International Conference on Document Analysis and Recognition (Montreal, Quebec, Canada 14–16 August 1995) | Random decision forests
[38] | Friedman J H 2001 Ann. Stat. 29 1189 | machine.