[1] | Mary T A et al 1996 Science 272 90 | Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8
[2] | Chen J et al 2010 Physics 691 698 (in Chinese) |
[3] | Mohn P 1999 Nature 400 18 | A century of zero expansion
[4] | Attfield J P 2011 Nature 480 465 | A fresh twist on shrinking materials
[5] | Dove M T and Fang H 2016 Rep. Prog. Phys. 79 066503 | Negative thermal expansion and associated anomalous physical properties: review of the lattice dynamics theoretical foundation
[6] | Dubbeldam D et al 2007 Angew. Chem. Int. Ed. 46 4496 | Exceptional Negative Thermal Expansion in Isoreticular Metal–Organic Frameworks
[7] | Salvador J R et al 2003 Nature 425 702 | Zero thermal expansion in YbGaGe due to an electronic valence transition
[8] | Arvanitidis J et al 2003 Nature 425 599 | Temperature-induced valence transition and associated lattice collapse in samarium fulleride
[9] | Takenaka K and Takagi H 2005 Appl. Phys. Lett. 87 261902 | Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides
[10] | Hao Y et al 2001 Appl. Phys. Lett. 78 3277 | Negative thermal expansion and magnetic properties of Y2Al3Fe14−xMnx compounds
[11] | Li W H et al 2002 Phys. Rev. Lett. 89 135504 | Thermal Contraction of Au Nanoparticles
[12] | Zakharchenko K V et al 2009 Phys. Rev. Lett. 102 046808 | Finite Temperature Lattice Properties of Graphene beyond the Quasiharmonic Approximation
[13] | Evans J S O et al 1997 J. Solid State Chem. 133 580 | Negative Thermal Expansion in a Large Molybdate and Tungstate Family
[14] | Mary T A and Sleight A W 1999 J. Mater. Res. 14 912 | Bulk thermal expansion for tungstate and molybdates of the type A2M3O12
[15] | Mittal R and Chaplot S L 1999 Phys. Rev. B 60 7234 | Lattice dynamical calculation of isotropic negative thermal expansion in over 0–1050 K
[16] | Tallentire S E, Child F, Fall I et al 2013 J. Am. Chem. Soc. 135 12849 | Systematic and Controllable Negative, Zero, and Positive Thermal Expansion in Cubic Zr 1– x Sn x Mo 2 O 8
[17] | Greve B K et al 2010 J. Am. Chem. Soc. 132 15496 | Pronounced Negative Thermal Expansion from a Simple Structure: Cubic ScF 3
[18] | Chen J et al 2017 Nat. Commun. 8 14441 | Tunable thermal expansion in framework materials through redox intercalation
[19] | Hu L et al 2016 J. Am. Chem. Soc. 138 8320 | New Insights into the Negative Thermal Expansion: Direct Experimental Evidence for the “Guitar-String” Effect in Cubic ScF 3
[20] | Goodwin A L and Kepert C J 2005 Phys. Rev. B 71 140301 | Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials
[21] | Chapman K W et al 2006 J. Am. Chem. Soc. 128 7009 | Compositional Dependence of Negative Thermal Expansion in the Prussian Blue Analogues M II Pt IV (CN) 6 (M = Mn, Fe, Co, Ni, Cu, Zn, Cd)
[22] | Margadonna S et al 2004 J. Am. Chem. Soc. 126 15390 | Zero Thermal Expansion in a Prussian Blue Analogue
[23] | Goodwin A L et al 2005 J. Am. Chem. Soc. 127 17980 | Guest-Dependent Negative Thermal Expansion in Nanoporous Prussian Blue Analogues M II Pt IV (CN) 6 · x H 2 O (0 ≤ x ≤ 2; M = Zn, Cd)
[24] | Goodwin A L et al 2008 Science 319 794 | Colossal Positive and Negative Thermal Expansion in the Framework Material Ag3[Co(CN)6]
[25] | Duyker S G et al 2013 Angew. Chem. 125 5374 | Negative Thermal Expansion in LnCo(CN) 6 (Ln=La, Pr, Sm, Ho, Lu, Y): Mechanisms and Compositional Trends
[26] | Gao Q L et al 2017 Angew. Chem. Int. Ed. 56 9023 | Switching Between Giant Positive and Negative Thermal Expansions of a YFe(CN) 6 -based Prussian Blue Analogue Induced by Guest Species
[27] | Han S S and Goddard W A 2007 J. Phys. Chem. C 111 15185 | Metal−Organic Frameworks Provide Large Negative Thermal Expansion Behavior
[28] | Grobler I et al 2013 J. Am. Chem. Soc. 135 6411 | Tunable Anisotropic Thermal Expansion of a Porous Zinc(II) Metal–Organic Framework
[29] | Zhou H L et al 2015 Nat. Commun. 6 6917 | Supramolecular-jack-like guest in ultramicroporous crystal for exceptional thermal expansion behaviour
[30] | Ohkoshi S et al 2007 Angew. Chem. 119 3302 | Coexistence of Ferroelectricity and Ferromagnetism in a Rubidium Manganese Hexacyanoferrate
[31] | Kaye S S and Long J R 2005 J. Am. Chem. Soc. 127 6506 | Hydrogen Storage in the Dehydrated Prussian Blue Analogues M 3 [Co(CN) 6 ] 2 (M = Mn, Fe, Co, Ni, Cu, Zn)
[32] | Gao Q L et al 2018 Inorg. Chem. Front. 5 438 | Structure and excellent visible light catalysis of Prussian blue analogues BiFe(CN) 6 ·4H 2 O
[33] | Patra C R 2016 Theranostics. Nanomed. 11 569 | Prussian blue nanoparticles and their analogues for application to cancer theranostics
[34] | Gao Q L et al 2018 Inorg. Chem. 57 10918 | Low-Frequency Phonon Driven Negative Thermal Expansion in Cubic GaFe(CN) 6 Prussian Blue Analogues
[35] | Gao Q L et al 2018 Inorg. Chem. 57 14027 | Tunable Thermal Expansion from Negative, Zero, to Positive in Cubic Prussian Blue Analogues of GaFe(CN) 6
[36] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[37] | Kresse G 1999 Phys. Rev. B 59 1758 | From ultrasoft pseudopotentials to the projector augmented-wave method
[38] | John K B et al 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[39] | Togo A et al 2008 Phys. Rev. B 78 134106 | First-principles calculations of the ferroelastic transition between rutile-type and -type at high pressures
[40] | Wang L et al 2014 Mater. Chem. Phys. 148 214 | First-principles investigation of negative thermal expansion in II-VI semiconductors
[41] | Wang Z et al 2013 J. Appl. Phys. 114 063508 | First-principles study of negative thermal expansion in zinc oxide
[42] | Chang D et al 2016 Phys. Chem. Chem. Phys. 18 14503 | Phonon and thermal expansion properties in Weyl semimetals MX (M = Nb, Ta; X = P, As): ab initio studies
[43] | Chang D et al 2017 Phys. Rev. B 95 104101 | Abnormal volumetric thermal expansion in the hourglass fermion materials KHgAs and KHgSb
[44] | Chang D et al 2017 Phys. Chem. Chem. Phys. 19 2067 | Negative thermal expansion in 2H CuScO 2 originating from the cooperation of transverse thermal vibrations of Cu and O atoms
[45] | Souvatzis P and Eriksson O 2008 Phys. Rev. B 77 024110 | Ab initio calculations of the phonon spectra and the thermal expansion coefficients of the metals