[1] | Goos F and Hänchen H 1947 Ann. Phys. 436 333 | Ein neuer und fundamentaler Versuch zur Totalreflexion
[2] | Goos F and Hänchen H 1958 Ann. Phys. 5 251 | Extension of the Hartree method to strongly interacting systems
[3] | Bretenaker F, Floch A L and Dutriaux L 1992 Phys. Rev. Lett. 68 931 | Direct measurement of the optical Goos-Hänchen effect in lasers
[4] | Emile O, Galstyan T, Le Floch A and Bretenaker F 1995 Phys. Rev. Lett. 75 1511 | Measurement of the Nonlinear Goos-Hänchen Effect for Gaussian Optical Beams
[5] | Yu W J, Sun H and Gao L 2017 Sci. Rep. 7 45866 | Magnetic control of Goos-Hänchen shifts in a yttrium-iron-garnet film
[6] | Ma P J and Gao L 2017 Opt. Express 25 9676 | Large and tunable lateral shifts in one-dimensional PT-symmetric layered structures
[7] | Madrazo A and Nieto-Veperinas M 1995 Opt. Lett. 20 2445 | Detection of subwavelength Goos–Hänchen shifts from near-field intensities: a numerical simulation
[8] | Wang X, Yin C, Sun J, Li H, Wang Y, Ran M and Cao Z 2013 Opt. Express 21 13380 | High-sensitivity temperature sensor using the ultrahigh order mode-enhanced Goos-Hänchen effect
[9] | Tonouchi M 2007 Nat. Photon. 1 97 | Cutting-edge terahertz technology
[10] | Zang M D, He T, Zhang B, Zhong L and Shen J 2016 Opt. Commun. 370 81 | Temperature-dependent Goos–Hänchen shift in the terahertz range
[11] | Hendry E, Hale P J, Moger J, Savchenko A K and Mikhailov S A 2010 Phys. Rev. Lett. 105 097401 | Coherent Nonlinear Optical Response of Graphene
[12] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 | Electric Field Effect in Atomically Thin Carbon Films
[13] | Cox J D and de Abajo F J G 2014 Nat. Commun. 5 5725 | Electrically tunable nonlinear plasmonics in graphene nanoislands
[14] | Zhang K, Huang Y, Miroshnichenko A E and Gao L 2017 J. Phys. Chem. C 121 11804 | Tunable Optical Bistability and Tristability in Nonlinear Graphene-Wrapped Nanospheres
[15] | Peres N M R, Bludov Y V, Santos J E, Jauho A P and Vasilevskiy M I 2014 Phys. Rev. B 90 125425 | Optical bistability of graphene in the terahertz range
[16] | Merano M 2016 Opt. Lett. 41 187 | Nonlinear optical response of a two-dimensional atomic crystal
[17] | Hanson G W 2008 J. Appl. Phys. 103 064302 | Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene
[18] | Gan C H, Chu H S and Li E P 2012 Phys. Rev. B 85 125431 | Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies
[19] | Artmann K 1799 Ann. Phys. 2 87 | Ueber drehende Schwingungen eines Stabes
[20] | Yu B B, Deng X H, Yuan J and Liao Q H 2015 J. Mod. Opt. 62 1650 | Tunable THz optical bistability in graphene-based heterostructures
[21] | Leung P T, Chen C W and Chiang H P 2007 Opt. Commun. 276 206 | Large negative Goos–Hanchen shift at metal surfaces
[22] | Hou P, Chen Y Y, Chen X, Shi J L and Wang Q 2007 Phys. Rev. A 75 045802 | Giant bistable shifts for one-dimensional nonlinear photonic crystals
[23] | Li C F 2003 Phys. Rev. Lett. 91 133903 | Negative Lateral Shift of a Light Beam Transmitted through a Dielectric Slab and Interaction of Boundary Effects
[24] | Chen X and Li C F 2004 Phys. Rev. E 69 066617 | Lateral shift of the transmitted light beam through a left-handed slab