$L,M=0$,0 | $L,M=1$,0 | $L,M=1$,1 | $L,M=1$,$-$1 | |
---|---|---|---|---|
$L^{\prime},M^{\prime}=0$,0 | 1 | 0 | 0 | 0 |
$L^{\prime},M^{\prime}=1$,0 | 0 | $-\frac{1}{9}$ | 0 | 0 |
$L^{\prime},M^{\prime}=1$,1 | 0 | 0 | $\frac{1}{9}$ | 0 |
$L^{\prime},M^{\prime}=1$,$-$1 | 0 | 0 | 0 | $\frac{1}{9}$ |
[1] | Asner D M et al 2009 Int. J. Mod. Phys. A 24 499 | Charm Physics
[2] | He X G, Ma J P and McKellar B 1993 Phys. Rev. D 47 R1744 | violation in
[3] | Bigi I I, Kang X W and Li H B 2018 Chin. Phys. C 42 013101 | CP asymmetries in Strange Baryon Decays
[4] | Kang X W, Li H B and Lu G R 2010 Phys. Rev. D 81 051901 | Study of oscillation in quantum coherent by using decay
[5] | Eaton M W et al 1984 Phys. Rev. D 29 804 | Decays of the to baryon-antibaryon final states
[6] | Pallin D et al 1987 Nucl. Phys. B 292 653 | Baryon pair production in decays
[7] | Ablikim M et al 2017 Phys. Rev. D 95 052003 | Study of and decay to and final states
[8] | Aubert B et al 2007 Phys. Rev. D 76 092006 | Study of , , using initial state radiation with BABAR
[9] | Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777 | Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?
[10] | Törnqvist N A 1981 Found. Phys. 11 171 | Suggestion for Einstein-Podolsky-Rosen experiments using reactions like $$e^ + e^ - \to \Lambda \bar \Lambda \to \pi ^ - p\pi ^ + \bar p$$
[11] | Tixier M H 1988 Phys. Lett. B 212 523 | Looking at CP invariance and quantum mechanics in decay
[12] | Leader E 2001 Spin in Particle Physics (Cambridge: Cambridge University Press) |
[13] | Lee T D and Yang C N 1957 Phys. Rev. 108 1645 | General Partial Wave Analysis of the Decay of a Hyperon of Spin ½
[14] | BESIII Collaboration and Ablikim M et al 2018 arXiv:1808.08917 | Polarization and Entanglement in Baryon-Antibaryon Pair Production in Electron-Positron Annihilation
[15] | Brodsky S J and Lepage G P 1981 Phys. Rev. D 24 2848 | Helicity selection rules and tests of gluon spin in exclusive quantum-chromodynamic processes
[16] | Olive K A 2014 Chin. Phys. C 38 090001 | Review of Particle Physics