[1] | Benenti G et al 2017 Phys. Rep. 694 1 | Fundamental aspects of steady-state conversion of heat to work at the nanoscale
[2] | Sothmann B et al 2015 Nanotechnology 26 032001 | Thermoelectric energy harvesting with quantum dots
[3] | Thierschmann H et al 2015 Nat. Nanotechnol. 10 854 | Three-terminal energy harvester with coupled quantum dots
[4] | Roche B et al 2015 Nat. Commun. 6 6738 | Harvesting dissipated energy with a mesoscopic ratchet
[5] | Josefsson M et al 2018 Nat. Nanotechnol. 13 920 | A quantum-dot heat engine operating close to the thermodynamic efficiency limits
[6] | Su H et al 2015 Chin. Phys. Lett. 32 100501 | Optimal Performance Analysis of a Three-Terminal Thermoelectric Refrigerator with Ideal Tunneling Quantum Dots
[7] | Su S et al 2016 Sci. Rep. 6 21425 | Thermal electron-tunneling devices as coolers and amplifiers
[8] | Edwards H L et al 1993 Appl. Phys. Lett. 63 1815 | A quantum‐dot refrigerator
[9] | Edwards H L et al 1995 Phys. Rev. B 52 5714 | Cryogenic cooling using tunneling structures with sharp energy features
[10] | Prance J R et al 2009 Phys. Rev. Lett. 102 146602 | Electronic Refrigeration of a Two-Dimensional Electron Gas
[11] | Jordan A N et al 2013 Phys. Rev. B 87 075312 | Powerful and efficient energy harvester with resonant-tunneling quantum dots
[12] | Shi Z C et al 2017 Chin. Phys. Lett. 34 110501 | Thermodynamic Performance of Three-Terminal Hybrid Quantum Dot Thermoelectric Devices *
[13] | Kano S and Fujii M 2017 Nanotechnology 28 095403 | Conversion efficiency of an energy harvester based on resonant tunneling through quantum dots with heat leakage
[14] | Sothmann B et al 2013 New J. Phys. 15 095021 | Powerful energy harvester based on resonant-tunneling quantum wells
[15] | Choi Y and Jordan A N 2015 Physica E 74 465 | Three-terminal heat engine and refrigerator based on superlattices
[16] | Van Den Broeck C 2005 Phys. Rev. Lett. 95 190602 | Thermodynamic Efficiency at Maximum Power