Low-Temperature Properties of CePt3P Tuned by Magnetic Field
-
Abstract
We present low-temperature magnetization, magnetoresistance and specific heat measurements on the Kondo lattice compound CePt3P under applied magnetic fields up to 9.0 T. At zero field, CePt3P exhibits a moderately enhanced Sommerfeld coefficient of electronic specific heat γCe=86 mJ/mol⋅K2 as well as two successive magnetic transitions of Ce 4f moments: an antiferromagnetic ordering at TN1=3.0 K and a spin reorientation at TN2=1.9 K. The value of TN1 shifts to lower temperature as magnetic field increases, and it is ultimately suppressed around Bc∼3.0 T at 1.5 K. No evidence of non-Fermi liquid behavior is observed around Bc down to the lowest temperature measured. Moreover, γ decreases monotonously with increasing the magnetic field. On the other hand, the electrical resistivity shows an anomalous temperature dependence ρ∝Tn with the exponent n decreasing monotonously from ∼2.6 around Bc down to ∼1.7 for B=9.0 T. The T–B phase diagram constructed from the present experimental results of CePt3P does not match the quantum criticality scenario of heavy fermion systems. -
-
References
[1] Hewson A C 1993 The Kondo Problem to Heavy Fermions Cambridge: Cambridge University Press[2] Stewart G R 2006 Rev. Mod. Phys. 78 743 doi: 10.1103/RevModPhys.78.743[3] Löhneysen H v, Rosch A, Vojta M and Wölfle P 2007 Rev. Mod. Phys. 79 1015 doi: 10.1103/RevModPhys.79.1015[4] Sachdev S 2000 Science 288 475 doi: 10.1126/science.288.5465.475[5] Coleman P, Pépin C, Si Q M and Ramazashvili R 2001 J. Phys.: Condens. Matter 13 R723 doi: 10.1088/0953-8984/13/35/202[6] Si Q M, Rabello S, Ingersent K and Smith J U 2001 Nature 413 804 doi: 10.1038/35101507[7] Doniach S 1977 Physica B+C 91 231 doi: 10.1016/0378-43637790190-5[8] Balicas L, Nakatsuji S, Lee H, Schlottmann P, Murphy T P and Fisk Z 2005 Phys. Rev. B 72 064422 doi: 10.1103/PhysRevB.72.064422[9] Mun E, Bud'ko S L and Canfield P C 2010 Phys. Rev. B 82 054424 doi: 10.1103/PhysRevB.82.054424[10] Gegenwart P, Custers J, Geibel C, Neumaier K, Tayama T, Tenya K, Trovarelli O and Steglich F 2002 Phys. Rev. Lett. 89 056402 doi: 10.1103/PhysRevLett.89.056402[11] Bud'ko S L, Morosan E and Canfield P C 2004 Phys. Rev. B 69 014415 doi: 10.1103/PhysRevB.69.014415[12] Chen J, Wang Z, Zheng S Y, Feng C M, Dai J H and Xu Z A 2017 Sci. Rep. 7 41853 doi: 10.1038/srep41853[13] Takayama T, Kuwano K, Hirai D, Katsura Y, Yamamoto A and Takagi H 2012 Phys. Rev. Lett. 108 237001 doi: 10.1103/PhysRevLett.108.237001[14] Chen H, Xu X F, Cao C and Dai J H 2012 Phys. Rev. B 86 125116 doi: 10.1103/PhysRevB.86.125116[15] Kang C J, Ahn K H, Lee K W and Min B I 2013 J. Phys. Soc. Jpn. 82 053703 doi: 10.7566/JPSJ.82.053703[16] Subedi A, Ortenzi L and Boeri L 2013 Phys. Rev. B 87 144504 doi: 10.1103/PhysRevB.87.144504[17] Zocco D A, Krannich S, Heid R, Bohnen K P, Wolf T, Forrest T, Bosak A and Weber F 2015 Phys. Rev. B 92 220504 doi: 10.1103/PhysRevB.92.220504[18] Schotte K D and Schotte U 1975 Phys. Lett. A 55 38 doi: 10.1016/0375-96017590386-2[19] Bud'ko S L, Canfield P C, Avila M A and Takabatake T 2007 Phys. Rev. B 75 094433 doi: 10.1103/PhysRevB.75.094433[20] Custers J, Gegenwart P, Wilhelm H, Neumaier K, Tokiwa Y, Trovarelli O, Geibel C, Steglich F, Pépin C and Coleman P 2003 Nature 424 524 doi: 10.1038/nature01774[21] Niklowitz P G, Knebel G, Flouquet J, Bud'ko S L and Canfield P C 2006 Phys. Rev. B 73 125101 doi: 10.1103/PhysRevB.73.125101 -
Related Articles
[1] Yunjing Gao, Jianda Wu. Quantum magnetism from low-dimensional quantum Ising models with quantum integrability [J]. Chin. Phys. Lett., 2025, 42(4): 047501. doi: 10.1088/0256-307X/42/4/047501 [2] ZHANG Guo-Ying, CHEN Hui, YANG Dan, HU Feng, LIU Hai-Shun. Adiabatic Magnetooptical and Magnetocaloric Effects of Tb3Ga5O12 at Low Temperature in Strong Magnetic Fields [J]. Chin. Phys. Lett., 2012, 29(2): 027502. doi: 10.1088/0256-307X/29/2/027502 [3] JI Chang-Jian, ZHANG Cheng-Qiang, ZHAO Gang, WANG Wen-Jing, SUN Gang, YUAN Hui-Min, HAN Qi-Feng. Preparation and Properties of Diluted Magnetic Semiconductors GaMnAs by Low-Temperature Molecular Epitaxy [J]. Chin. Phys. Lett., 2011, 28(9): 097101. doi: 10.1088/0256-307X/28/9/097101 [4] HAN Yue-Ping, HAN Yan. Physical and Chemical Properties of TiOxNy Prepared by Low-Temperature Oxidation of Ultrathin Metal Nitride Directly Deposited on SiO2 [J]. Chin. Phys. Lett., 2009, 26(3): 036402. doi: 10.1088/0256-307X/26/3/036402 [5] LIU Hai-Qing, SU Shao-Kui, JING Xiu-nian, LIU Ying, LI Yan-rong, HE Lun-Hua, GE Pei-Wen, YAN Qi-Wei, WANG Yun-Ping. Shape Dependence of Low-Temperature Magnetic Relaxation of Mn12Ac [J]. Chin. Phys. Lett., 2008, 25(7): 2631-2633. [6] LIU Qing-Fang, JIANG Chang-Jun, FAN Xiao-Long, WANG Jian-Bo, XUE De-Sheng. Low-Temperature Magnetic Properties of Co Antidot Array [J]. Chin. Phys. Lett., 2006, 23(6): 1592-1595. [7] LI Tao, YANG Shao-Guang, HUANG Li-Sheng, GU Ben-Xi, DU You-Wei. Formation of Co3O4 Nanotubes and the Magnetic Behaviour at Low Temperature [J]. Chin. Phys. Lett., 2004, 21(5): 966-969. [8] GU Ben-Xi, ZHANG Shi-Yuan, DU You-Wei. Magnetic Properties and Low-Field Magnetoresistance ofPr0.7Pb0.3MnO3 Single Crystals [J]. Chin. Phys. Lett., 2001, 18(4): 598-600. [9] RUI Ying, JI Helin, XU Xiaonong, QIN Mengjun, SHAO Huimin, JIN Xin, YAO Xixian. Flux Creep Determination of Field Dependence of Magnetic Jc at Low Temperatures [J]. Chin. Phys. Lett., 1995, 12(4): 233-236. [10] WANG Yi-zhong, WANG Zhen-xi, GONG Wei, FENG Min-ying. LOW TEMPERATURE MAGNETIC PROPERTIES OF Nd2Fe14B SINGLE CRYSTAL [J]. Chin. Phys. Lett., 1985, 2(8): 349-352.