[1] | Liao Z et al 2016 Phys. Scr. 91 063004 | Photon transport in a one-dimensional nanophotonic waveguide QED system
[2] | Roy D et al 2017 Rev. Mod. Phys. 89 021001 | Colloquium : Strongly interacting photons in one-dimensional continuum
[3] | Gu X, Kockum A F, Miranowicz A, Liu Y and Nori F 2017 Phys. Rep. 718–719 1 | Microwave photonics with superconducting quantum circuits
[4] | Chang D E, Douglas J S, Tudela A G, Hung C L and Kimble H J 2018 Rev. Mod. Phys. 90 031002 | Colloquium : Quantum matter built from nanoscopic lattices of atoms and photons
[5] | Sipahigil A, Evans R E, Sukachev D D, Burek M J, Borregaard J, Bhaskar M K, Nguyen C T, Pacheco J L, Atikian H A, Meuwly C, Camacho R M, Jelezko F, Bielejec E, Park H, Loncar M and Lukin M D 2016 Science 354 847 | An integrated diamond nanophotonics platform for quantum-optical networks
[6] | Zheng H, Gauthier D J and Baranger H U 2013 Phys. Rev. Lett. 111 090502 | Waveguide-QED-Based Photonic Quantum Computation
[7] | Liao Z and Zubairy M S 2018 Phys. Rev. A 98 023815 | Quantum state preparation by a shaped photon pulse in a one-dimensional continuum
[8] | Facchi P, Kim M S, Pascazio S, Pepe F V, Pomarico D and Tufarelli T 2016 Phys. Rev. A 94 043839 | Bound states and entanglement generation in waveguide quantum electrodynamics
[9] | Zheng A, Li J, Yu R, Lv X Y and Wu Y 2012 Opt. Express 20 16902 | Generation of Greenberger-Horne-Zeilinger state of distant diamond nitrogen-vacancy centers via nanocavity input-output process
[10] | Mirza I M and Schotland J C 2016 Phys. Rev. A 94 012302 | Multiqubit entanglement in bidirectional-chiral-waveguide QED
[11] | Li J, Yu R and Wu Y 2014 Phys. Rev. B 89 035311 | Dipole-induced high-order sideband comb employing a quantum dot strongly coupled to a photonic crystal cavity via a waveguide
[12] | Li J, Yu R, Ding C, Wang W and Wu Y 2014 Phys. Rev. A 90 033830 | Optical-frequency-comb generation and entanglement with low-power optical input in a photonic molecule
[13] | Liao Z, Nha H and Zubairy M S 2016 Phys. Rev. A 93 033851 | Single-photon frequency-comb generation in a one-dimensional waveguide coupled to two atomic arrays
[14] | Li T, Miranowicz A, Hu X, Xia K and Nori F 2018 Phys. Rev. A 97 062318 | Quantum memory and gates using a -type quantum emitter coupled to a chiral waveguide
[15] | Zheng H and Baranger H U 2013 Phys. Rev. Lett. 110 113601 | Persistent Quantum Beats and Long-Distance Entanglement from Waveguide-Mediated Interactions
[16] | Song G Z, Munro E, Nie W, Deng F G, Yang G J and Kwek L C 2017 Phys. Rev. A 96 043872 | Photon scattering by an atomic ensemble coupled to a one-dimensional nanophotonic waveguide
[17] | Song G Z, Munro E, Nie W, Kwek L C, Deng F G and Long G L 2018 Phys. Rev. A 98 023814 | Photon transport mediated by an atomic chain trapped along a photonic crystal waveguide
[18] | Shen J T and Fan S 2005 Opt. Lett. 30 2001 | Coherent photon transport from spontaneous emission in one-dimensional waveguides
[19] | Zhou L, Gong Z R, Liu Y, Sun C P and Nori F 2008 Phys. Rev. Lett. 101 100501 | Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide
[20] | Kim N C, Li J B, Yang Z J, Hao Z H and Wang Q Q 2010 Appl. Phys. Lett. 97 061110 | Switching of a single propagating plasmon by two quantum dots system
[21] | Yan C H and Wei L F 2016 Phys. Rev. A 94 053816 | Photonic switches with ideal switching contrasts for waveguide photons
[22] | Cheng M T, Luo Y Q, Wang P Z and Zhao G X 2010 Appl. Phys. Lett. 97 191903 |
[23] | Ko M C, Kim N C, Ho N C, Ryom J S, Hao Z H, Li J B and Wang Q Q 2017 Appl. Phys. B 123 287 | Influence of the flip–flop interaction on a single plasmon transport in 1D waveguide
[24] | Kim N C, Ko M C and Choe C 2015 Plasmonics 10 1447 | Scattering of a Single Plasmon by Two-Level and V-Type Three-Level Quantum Dot Systems Coupled to 1D Waveguide
[25] | Li J B, He M D, Wang X J, Peng X F and Chen L Q 2014 Chin. Phys. B 23 067302 | Switching and Fano resonance via exciton—plasmon interaction
[26] | Zhou T, Zang X F and Xu D H 2014 Chin. Phys. Lett. 31 040302 | Manipulating Single-Photon Transport Properties in an Asymmetrical Waveguide Coupled to a Whispering-Gallery Resonator Containing a Two-Level Atom
[27] | Zhou T, Zang X F and Chen J 2014 Chin. Phys. Lett. 31 070301 | Single-Photon Transport Properties in Coupled-Resonator Waveguide with Nonlocal Coupling to a Whispering-Gallery Resonator Interacting with Two Separated Atoms
[28] | Tian W, Chen B and Xu W D 2012 Chin. Phys. Lett. 29 030302 | Controlling Single-Photon Transport along an Optical Waveguide by using a Three-Level Atom
[29] | Chang D E, Sørensen A S, Demler E A and Lukin M D 2007 Nat. Phys. 3 807 | A single-photon transistor using nanoscale surface plasmons
[30] | Kyriienko O and Sørensen A S 2016 Phys. Rev. Lett. 117 140503 | Continuous-Wave Single-Photon Transistor Based on a Superconducting Circuit
[31] | Zhou L, Yang L P, Li Y and Sun C P 2013 Phys. Rev. Lett. 111 103604 | Quantum Routing of Single Photons with a Cyclic Three-Level System
[32] | Lu J, Zhou L, Kuang L M and Nori F 2014 Phys. Rev. A 89 013805 | Single-photon router: Coherent control of multichannel scattering for single photons with quantum interferences
[33] | Yan G A, Qiao H X, Lu H and Chen A X 2017 Sci. Chin. Phys. Mech. 60 090311 | Quantum information-holding single-photon router based on spontaneous emission
[34] | Yan C H, Li Y, Yuan H and Wei L F 2018 Phys. Rev. A 97 023821 | Targeted photonic routers with chiral photon-atom interactions
[35] | Scheucher M, Hilico A, Will E, Volz J and Rauschenbeutel A 2016 Science 354 1577 | Quantum optical circulator controlled by a single chirally coupled atom
[36] | Xia K Y, Lu G W, Lin G W, Cheng Y Q, Niu Y P, Gong S Q and Twamley J 2014 Phys. Rev. A 90 043802 | Reversible nonmagnetic single-photon isolation using unbalanced quantum coupling
[37] | Sayrin C, Junge C, Mitsch R, Albrecht B, O Shea D, Schneeweiss P, Volz J and Rauschenbeutel A 2015 Phys. Rev. X 5 041036 | Nanophotonic Optical Isolator Controlled by the Internal State of Cold Atoms
[38] | Xia K Y, Nori F and Xiao M 2018 Phys. Rev. Lett. 121 203602 | Cavity-Free Optical Isolators and Circulators Using a Chiral Cross-Kerr Nonlinearity
[39] | Xu X W, Chen A X, Li Y and Liu Y X 2017 Phys. Rev. A 95 063808 | Single-photon nonreciprocal transport in one-dimensional coupled-resonator waveguides
[40] | Xia X, Zhang X, Xu J, Cheng M and Yang Y 2018 Chin. Phys. B 27 114205 | Nonlinear coherent perfect photon absorber in asymmetrical atom–nanowires coupling system
[41] | Xia X, Zhang X, Xu J, Cheng M and Yang Y 2017 J. Appl. Phys. 122 023102 | Nonlinear input-output feature of the atom-nanowires coupling system
[42] | Wu N, Zhang C, Jin X R, Zhang Y Q and Lee Y P 2018 Opt. Express 26 003839 | Unidirectional reflectionless phenomena in a non-Hermitian quantum system of quantum dots coupled to a plasmonic waveguide
[43] | Lu Y N, Gao S Y, Fang A P, Li P B, Li F L and Zubairy M S 2017 Opt. Express 25 16151 | Coherent frequency down-conversions and entanglement generation in a Sagnac interferometer
[44] | Xu X W, Chen A X, Li Y and Liu Y X 2017 Phys. Rev. A 96 053853 | Nonreciprocal single-photon frequency converter via multiple semi-infinite coupled-resonator waveguides
[45] | Guo Y, Xiao M and Fan S H 2017 Phys. Rev. Lett. 119 167401 | Topologically Protected Complete Polarization Conversion
[46] | Liu F, Xu J P and Yang Y P 2014 J. Opt. Soc. Am. B 31 735 | Polarization conversion of reflected electromagnetic wave from topological insulator
[47] | Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T and Zhou L 2007 Phys. Rev. Lett. 99 063908 | Manipulating Electromagnetic Wave Polarizations by Anisotropic Metamaterials
[48] | Hao J M, Ren Q J, An Z H, Huang X Q, Chen Z H, Qiu M and Zhou L 2009 Phys. Rev. A 80 023807 | Optical metamaterial for polarization control
[49] | Cong L Q, Cao W, Zhang X Q, Tian Z, Gu J Q, Singh R, Han J G and Zhang W L 2013 Appl. Phys. Lett. 103 171107 | A perfect metamaterial polarization rotator
[50] | Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R and Chen H T 2013 Science 340 1304 | Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction
[51] | Tsoi T S and Law C K 2009 Phys. Rev. A 80 033823 | Single-photon scattering on -type three-level atoms in a one-dimensional waveguide
[52] | Zhang Z Y, Dong Y L, Zhang S L and Zhu S Q 2013 Opt. Express 21 20786 | Polarization-dependent photon switch in a one-dimensional coupled-resonator waveguide
[53] | Li M X, Yang J, Lin G W, Niu Y P and Gong S Q 2018 Chin. Phys. B 27 054206 | Scattering of a single photon in a one-dimensional coupled resonator waveguide with a Λ-type emitter assisted by an additional cavity
[54] | Cheng M T, Xia X W, Xu J P, Zhu C J, Wang B and Ma X S 2018 Opt. Express 26 28872 | Single photon polarization conversion via scattering by a pair of atoms
[55] | Yan C H, Wei L F, Jia W Z and Shen J T 2011 Phys. Rev. A 84 045801 | Controlling resonant photonic transport along optical waveguides by two-level atoms
[56] | Yan C H, Jia W Z and Wei L F 2014 Phys. Rev. A 89 033819 | Controlling single-photon transport with three-level quantum dots in photonic crystals
[57] | Yuan L Q, Xu S and Fan S 2015 Opt. Lett. 40 5140 | Achieving nonreciprocal unidirectional single-photon quantum transport using the photonic Aharonov–Bohm effect
[58] | Witthaut D and Sorensen A S 2010 New J. Phys. 12 043052 | Photon scattering by a three-level emitter in a one-dimensional waveguide